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Summary

In this paper, we present the StarNEig library for solving dense nonsymmetric stan-
dard and generalized eigenvalue problems. The library is built on top of the StarPU
runtime system and targets both shared and distributed memory machines. Some
components of the library have support for GPU acceleration. The library currently
applies to real matrices with real and complex eigenvalues and all calculations are
done using real arithmetic. Support for complex matrices is planned for a future
release. This paper is aimed at potential users of the library. We describe the design
choices and capabilities of the library, and contrast them to existing software such
as LAPACK and ScaLAPACK. StarNEig implements a ScaLAPACK compatibility
layer which should assist new users in the transition to StarNEig. We demonstrate
the performance of the library with a sample of computational experiments.
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1 INTRODUCTION

In this paper, we present the StarNEig library1 for solving dense nonsymmetric standard and generalized eigenvalue problems.
StarNEig differs from existing libraries such as LAPACK2 and ScaLAPACK3 by relying on a modern task-based approach (see,
for example, Reference4) in a manner similar to the already well-established PLASMA library5. Specifically, StarNEig is built
on top of the StarPU runtime system6 developed by the StarPU team at INRIA. This allows StarNEig to target both shared
memory and distributed memory machines. Furthermore, some components of StarNEig have support for GPU acceleration.
The library is under continuous development. Currently, StarNEig applies to real matrices with real and complex eigenvalues
and all calculations are done using real arithmetic.
This paper is addressed to potential users of the StarNEig library. We hope that readers, who are already familiar with ScaLA-

PACK, will be able to decide if StarNEig is suitable for them. In particular, we wish to communicate the changes needed to
integrate existing ScaLAPACK style (or LAPACK style) software with StarNEig. Central to this integration is the ScaLAPACK
compatibility layer implemented in StarNEig. This compatibility layer allows users to keep their existing two-dimensional block
cyclic distribution of the data and call StarNEig routines directly to perform the computations. The authors hope to start a
discussion which will help guide and prioritize the future development of the library.

https://doi.org/10.1002/cpe.5915
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Dense nonsymmetric eigenvalue problems are usually solved using three phases: reduction to Hessenberg form, reduction
to (real) Schur form and computation of eigenvectors. Additionally, a fourth phase, called eigenvalue reordering, can be per-
formed to acquire an invariant subspace that is associated with a given subset of eigenvalues. StarNEig provides shared memory
task-based implementations of all four phases for the standard eigenvalue problem while some phases are incomplete for the
generalized eigenvalue problem and for distributed memory computations (see Table 2 in Section 5). Performance-wise, the
Hessenberg reduction phase in StarNEig is comparable to the LAPACK, ScaLAPACK andMAGMA7 libraries, while the Schur
reduction and the reordering phases in StarNEig are significantly faster than the ScaLAPACK implementations. Moreover,
StarNEig can compute the eigenvectors directly from any real Schur form without suffering from floating-point overflow, i.e.,
the implementation is robust. The latter functionality simply does not exist in ScaLAPACK and the implementation in StarNEig
is significantly faster than the LAPACK implementation in both sequential and parallel settings (parallel BLAS). We refer the
reader to the NLAFET Deliverable Report D2.78 for comprehensive performance and accuracy evaluations.
The rest of this paper is organized as follows: Section 2 discusses existing libraries that provide functionality for solving dense

eigenvalue problems. Section 3 provides a brief summary of the solution of dense nonsymmetric eigenvalue problems using
the four phases mentioned earlier. Section 4 introduces the task-based approach and explains why the task-based approach can
lead to superior performance when compared to older, well-established techniques. Section 5 introduces the reader to some of
the inner workings of StarNEig. In particular, the current state of the library and its limitations are explained in this section.
Section 6 presents a sample of computational results which demonstrate the expected performance of StarNEig in both shared
and distributed memory, with and without GPUs. Finally, Section 7 concludes the paper.
Remark 1. This paper is an extended version of a conference paper by the authors9. The original conference paper only discussed
extensively two of the four phases (Schur reduction and eigenvalue reordering). This extended paper discusses all four phases.
We have also significantly extended the part of the paper that discusses the Schur reduction phase. The added content includes
several new illustrations and computational results. The major contribution of this paper is the extended description of the library
and its capabilities/limitations.

2 RELATED WORK

TABLE 1 A comparison between libraries that provide functionality for solving dense eigenvalue problems. From left to right:
complex input and output matrices supported, nonsymmetric eigenvalue problems supported, generalized eigenvalue prob-
lems supported, multiple CPU cores supported, distributed memory supported, and GPU accelerators supported. IC stands for
”Incomplete“.

Library Complex Nonsymmetric Generalized Multicore Distributed memory GPUs
LAPACK 2 Yes Yes Yes ⋅ ⋅ ⋅
MAGMA7 Yes Yes Yes IC ⋅ IC
ScaLAPACK 3 IC IC IC Yes Yes ⋅
Elemental10 IC IC IC Yes Yes ⋅
ELPA11 Yes ⋅ Yes Yes Yes ⋅
EigenEXA12 ⋅ ⋅ Yes Yes Yes ⋅
PLASMA5 Yes ⋅ Yes Yes ⋅ ⋅
StarNEig (v0.1.1) ⋅ Yes IC Yes IC IC
StarNEig (planned) Yes Yes Yes Yes Yes Yes

Many established and emerging libraries include software for solving dense eigenvalue problems. The most well-known
and significant libraries are summarized in Table 1. In particular, the libraries that provide functionality that is comparable to
StarNEig are the following:
LAPACK (Linear Algebra PACKage). This is the de facto standard library for dense numerical linear algebra using shared

memory machines. LAPACK contains a full software stack for solving dense standard and generalized, symmetric and
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nonsymmetric eigenvalue problems. Some LAPACK routines can be parallelized by compiling LAPACK with a parallel
BLAS library. This works well for the Hessenberg reduction phase, but poorly for the three remaining phases.

MAGMA (Matrix Algebra on GPU and Multicore Architectures). The MAGMA project seeks to develop a new genera-
tion of linear algebra libraries which target heterogeneous computer architectures, starting with current multicore and
multi-GPU systems. Currently, MAGMA offers only very limited parallel and GPU-accelerated functionality for dense
nonsymmetric eigenvalue problems (Hessenberg reduction) and offloads missing routines to LAPACK.

ScaLAPACK (Scalable LAPACK). This is the de facto standard library for numerical linear algebra using distributed memory
machines. ScaLAPACK does not contain a full stack for solving dense eigenvalue problems. In particular, there are no
routines for computing the eigenvectors from real Schur forms, and the routines for computing eigenvectors from complex
Schur forms are all vulnerable to floating-point overflow.

Elemental. The Elemental project sought to provide a distributed memory and arbitrary precision library for dense and sparse-
direct linear algebra, conic optimization, and lattice reduction. The library was never completed and the project was
abandoned in 2016. Elemental offloads the Hessenberg and Schur reduction phases to LAPACK and ScaLAPACK. The
library contains a multi-shift triangular solver that can be used to compute eigenvectors, but the overflow protection is
incomplete.

The SLATE (Software for Linear Algebra Targeting Exascale)13 library is being developed to provide software for dense numer-
ical linear algebra on current and future distributed computer systems. Currently, SLATE implements a set of parallel basic
linear algebra subroutines (parallel BLAS), as well as high level subroutines for solving linear systems and linear least square
problems. The authors state that future work will include nonsymmetric eigenvalue problems13.
In summary, LAPACK is the only library that can compute eigenvalues and eigenvectors for symmetric and nonsymmetric

matrices and matrix pairs. The more recent libraries only support the symmetric eigenvalue problems and the other libraries are
incomplete.

3 SOLUTION OF DENSE NONSYMMETRIC EIGENVALUE PROBLEMS

Given a matrixA ∈ ℝn×n, the standard eigenvalue problem consists of computing eigenvalues �i ∈ ℂ and matching eigenvectors
xi ∈ ℂn, xi ≠ 0, such that

Axi = �ixi. (1)
Similarly, given matrices A ∈ ℝn×n and B ∈ ℝn×n the generalized eigenvalue problem for the matrix pair (A,B) consists of
computing generalized eigenvalues �i ∈ ℂ ∪ {∞} and matching generalized eigenvectors xi ∈ ℂn, xi ≠ 0, such that

Axi = �iBxi. (2)
If the matrices A and B are sparse, then the well-known SLEPc library14 is one of the better tools for solving the eigenvalue

problems (1) and (2). Similarly, if the matrices A and B are symmetric, then algorithms and software that take advantage of the
symmetry are preferred (see the libraries listed in Table 1). Otherwise, if the matrices are both dense and nonsymmetric, then the
route of acquiring the (generalized) eigenvalues and the (generalized) eigenvectors usually includes the following three phases:
Hessenberg(-triangular) reduction: The matrix A or the matrix pair (A,B) is reduced to Hessenberg formH or Hessenberg-

triangular form (H,R) by a similarity transformation
A = Q1HQ

T
1 or (A,B) = Q1(H,R)ZT

1 , (3)
whereH is upper Hessenberg, R is a upper triangular, and Q1, Z1 ∈ ℝn×n are orthogonal matrices†.

Schur reduction: The Hessenberg matrixH or the Hessenberg-triangular matrix pair (H,R) is reduced to real Schur form S
or generalized real Schur form (S, T ) by a similarity transformation

H = Q2SQ
T
2 or (H,R) = Q2(S, T )ZT

2 , (4)

†For X, Y ,Q,Z ∈ ℝn×n, we define Q (X, Y )ZT =
(

QXZT , QY ZT ).
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where S is upper quasi-triangular with 1 × 1 and 2 × 2 blocks on the diagonal, T is upper triangular, and Q2, Z2 ∈ ℝn×n

are orthogonal matrices. The eigenvalues or the generalized eigenvalues can be determined from the diagonal blocks of S
or (S, T ). In particular, the 2 × 2 blocks on the diagonal of S correspond to the complex conjugate pairs of (generalized)
eigenvalues.

Eigenvectors: Finally, we solve for vectors yi ∈ ℂn from
(S − �iI)yi = 0 or (S − �iT )yi = 0 (5)

and backtransform to the original basis by
xi = Q1Q2yi or xi = Z1Z2yi. (6)

Additionally, a fourth phase can be performed to acquire an invariant subspace of A or (A,B) that is associated with a given
subset of eigenvalues or a given subset of generalized eigenvalues:
Eigenvalue reordering: The real Schur form S or the generalized real Schur form (S, T ) is reordered, such that a selected set

of eigenvalues or generalized eigenvalues appears among the leading diagonal blocks of an updated real Schur form Ŝ or
an updated generalized real Schur form (Ŝ, T̂ ), by a similarity transformation

S = Q3ŜQ
T
3 or (S, T ) = Q3(Ŝ, T̂ )ZT

3 , (7)
where Q3, Z3 ∈ ℝn×n are orthogonal matrices.

A detailed explanation of the underlying mathematical theory can be found in the textbook by Golub and van Loan15.

4 A CASE FOR THE TASK-BASED APPROACH

A task-based algorithm functions by cutting the computational work into self-contained tasks that all have a well defined set of
inputs and outputs. In particular, StarNEig divides the matrices into disjoint (square) tiles‡ and each task takes a set of tiles as its
input and produces/modifies a set of tiles as its output. The main difference between tasks and regular function/subroutine calls
is that a task-based algorithm does not call the associated computational kernels directly. Instead, StarNEig inserts the tasks into
a runtime system which then derives the data dependences between the tasks from the supplied input and output information
(i.e., the task graph is constructed implicitly). The runtime system then schedules the tasks to computational resources, such as
CPUs and GPUs, in a sequentially consistent order as dictated by the data dependences.
The main benefit of the task-based approach is that as long as the cutting is carefully done, the underlying parallelism is

exposed automatically as the runtime system gradually traverses the resulting task graph. In particular, the runtime system can
detect and tap into previously unexplored avenues of parallelism that are hidden within the task graphs. This leads to significantly
more powerful algorithms that are able to adapt to different inputs and changing hardware configurations. Other benefits of
the task-based approach include, for example, better load balancing and resource utilization due to dynamic scheduling, task
priorities and implicit MPI communications. In particular, since all MPI nodes have a (partial) copy of the task graph and are
aware of the data distribution, the runtime system is able to derive the necessary MPI communication pattern from the provided
information. Some explicit communication is required in a few special cases, for example, when the main thread accesses the
data before a data-dependent branching point. StarNEig also helps the runtime system by setting communication priorities.
Otherwise most of the communication is offloaded to the runtime system.
The following subsections briefly discuss the four phases in the algorithm stack from the point of view of task parallelism.

We do not attempt to explain the details of each algorithm, rather we focus on the key steps and explain how they benefit from
task parallelism. We will use the standard eigenvalue problem as an illustration.

4.1 GPU-accelerated Hessenberg reduction
We begin by discussing the Hessenberg reduction phase. We emphasize that this phase does not benefit as much from the task-
based approach at the other phases. Now, the so-called standard algorithm16 for reducing a nonsymmetric matrix A to upper

‡The StarPU runtime system does not differentiate between tiles that are stored contiguously and tiles that are stored in a strided manner. The latest version of StarNEig
(v0.1.1) does not rearrange the data in memory before registering it with StarPU but the feature may be introduced in a future release of the library.
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(a) Panels. (b) Reduce the panel. (c) Update the trailing matrix. (d) Update the top part from the
right.

FIGURE 1 An illustration of the standard algorithm for reducing a dense matrix to upper Hessenberg form.

Hessenberg formH first divides the matrixA into disjoint panels as illustrated in Figure 1a. Each panel is then reduced to upper
Hessenberg form as summarized below:

1. Reduce the panel. The ith column in the panel is reduced by constructing and applying a suitable Householder reflector
I − �ivivTi , where �i ∈ ℝ and vi ∈ ℝn. All involved reflectors are initially applied only inside the current panel and
accumulated into a compact WY representation I − ViTiV T

i , where Ti ∈ ℝi×i is upper triangular and Vi = [v1v2 … vi].
In tandem, one of the necessary intermediate results is also accumulated into a matrix Yi = AViTi. We emphasize that
the formula Yi ← AViTi is never explicitly evaluated. Instead, the matrix Yi is constructed column by column using an
equivalent update formula

Yi ←
[

Yi−1 | �i(A − Yi−iV T
i−1)vi

]

. (8)
The construction of the matrix Yi allows us to reduce the entire panel without updating the other sections of the matrix.
However, the update formula (8) includes a large matrix-vector multiplication involving the matrix A and the vector vi.
Fortunately, only lower part of the matrix Yi is needed and the matrix-vector multiplication therefore only involves the
section of the matrix A that trails the current column (see the shaded area in Figure 1b) and the non-zero part of the
vector vi. Although these BLAS-2 matrix-vector multiplications constitute approximately only 20% of the total number
of flops of the algorithm, they are significantly more expensive than the remaining 80% due to the fact that matrix-vector
multiplication is a memory-bound operation and the remaining 80% are mostly compute-bound BLAS-3 operations. This
is an important factor to consider when analysing the performance.

2. Update the trailing matrix. Update the section of the matrix that trails the current panel (see the shaded area in Figure 1c)
utilizing the update formula

A← (I − V TV T )T (A − Y V T ), (9)
where I − V TV T and Y are the final compact WY representation and the final intermediate result matrix from the panel
reduction step, respectively.

3. Update the top part from the right. Update the section of the matrix above the current panel (see the shaded area in Figure
1d) utilizing the update formula

A← A (I − V TV T ). (10)
Note that the above description is a simplification that is only meant to highlight the key computational steps, including the
memory-bound component. The formulas are very close to the ones used in the actual implementation but adding additional
details would make the description unnecessarily long. See the paper by Quintana-Ortí and van de Geijn16 for a complete
description of the algorithm.
In StarNEig (version 0.1-beta.2), each of the aforementioned three steps is formulated as a set of tasks. However, for task

scheduling overhead related reasons, the reduce the panel and update the trailing matrix steps are implemented as monolithic
tasks. Implementing each column reduction as a set of separate tasks would lead to an excessive number of lightweight tasks and
thus to an unmanageable amount of scheduling overhead. The computational resources are divided into two scheduling contexts:
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Critical path (Reduce the panel and Update the trailing matrix)

CPUs

GPU

CPUs

FIGURE 2 An illustration of the two scheduling contexts.

Parallel scheduling context contains a subset of the available CPU cores and a GPU, if one exists in the system. Each inserted
task is executed in parallel by all included CPU cores or by the GPU, depending on which resource is predicted to be the
best option by the runtime system. In order to accomplish this, the runtime system uses calibrated performance models
to predict the execution and data transfer times for each task. The reduce the panel and update the trailing matrix tasks
form the critical path of the algorithm and are scheduled to this scheduling context as illustrated in Figure 2. The CPU
implementation of the reduce the panel task copies the trailing matrix to memory buffers that are allocated from the local
NUMA islands. That is, each involved CPU core has its own local memory buffer and the obtainable memory bandwidth
is thus significantly higher compared to a situation where the CPU cores would access the memory across the NUMA
islands. Note that the trailing matrix is copied only once at the beginning of each reduce the panel task. This is another
reason for implementing the reduce the panel step as one monolithic task.

Sequential scheduling context contains the remaining CPU cores and will inherit computational resources from the parallel
scheduling context once the critical path has been completed. Each inserted task is executed sequentially by one of the
available computational resources. The update the top part from the right tasks are scheduled to this context as illustrated
in Figure 2. Note that the update the top part from the right tasks never feed back into the critical path and can therefore be
scheduled independently. The tasks that compute the matrix Q1 in (3) are also scheduled to this context and given lower
priority.

The main benefit that comes from the task-based approach here is that the runtime system is allowed to schedule the work
to the GPU when it predicts this will improve the performance. In particular, the runtime system usually schedules reduce the
panel tasks to the GPU because most modern GPUs have a much higher memory bandwidth than CPUs. This means that the
time that is spent computing the large matrix-vector multiplications is significantly reduced. The runtime system will handle the
necessary data transfer between main memory and GPU memory, including prefetching. The end result is that the task-based
implementation will naturally behave very similar to the implementation available in the MAGMA library7,17 but provides some
additional flexibility as the scheduling decisions are done dynamically. See the NLAFET Deliverable Report D2.618 for further
information.

4.2 Schur reduction and eigenvalue reordering
Wewill now use the Schur reduction and eigenvalue reordering phases to illustrate some of the more notable benefits of the task-
based approach. In particular, we demonstrate that StarNEig can successfully merge computational steps, that were previously
separated by global synchronization points, and thus improve the concurrency. The modern approach for obtaining a Schur form
S of a nonsymmetric matrix A is to apply the multi-shift QR algorithm with Aggressive Early Deflation (AED) to the upper
Hessenberg form H (see References19,20,21,22 and references therein). The algorithm is a sequence of steps of two types, AED
and bulge chasing, as illustrated in Figure 3 and summarized below:
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FIGURE 3 An illustration of the multi-shift QR algorithm with aggressive early deflation.

AED step first reduces a small diagonal window (a.k.a AEDwindow) to real Schur form using a recursive application of the QR
algorithm. When the sections of the matrix outside the AED window are updated from the left, a spike is induced to the
left of the AED window and thus we will temporarily deviate from the upper Hessenberg form. All diagonal blocks in the
reduced AED window are then systematically evaluated in order to identify those eigenvalues that can be safely deflated
without introducing significant perturbations. If the corresponding element in the spike is found to be small enough (i.e.,
the so-called deflation condition is satisfied), then the element is set to zero and the eigenvalue that corresponds to the
diagonal block is deflated. On the other hand, if the corresponding entry in the spike is found to be too large, then the
remaining AED window is reordered such that the diagonal block that failed the deflation check is moved to the upper
left corner of the window thus pushing the remaining unevaluated diagonal blocks down along the diagonal. After all
diagonal blocks have been evaluated, the remaining spike is eliminated by performing a small-sized Hessenberg reduction.
Note that the QR algorithm involves several data-dependent branching points that affect the resulting task graph and thus
StarNEig has to wait the completion of certain tasks before continuing the task insertion.

Bulge chasing step chases a set of 3 × 3 bulges down the diagonal. The eigenvalues of the diagonal blocks that failed the
deflation condition, �1, �2,… , �m, are used as shifts to generate the bulges. That is, the first column of the matrix H is
transformed to the first column of the matrix (H−�1I)(H−�2I) using a small-sized Householder reflector. When applied
from the both sides, the reflector creates fill-in in the form of a 3 × 3 bulge that appears in the upper left corner of the
matrix. At this point, the bulge could be eliminated by chasing it down the diagonal with a sequence of overlapping small-
sized Householder reflectors and this would complete one implicit QR iteration. However, a multi-shift QR algorithm
will instead chase the bulge just enough so that a second bulge can be introduced using the shifts �3 and �4. The same
procedure is then repeated until a total of m∕2 bulges have been introduced. The bulges are then chased in groups down
the diagonal to complete one pipelined QR iteration. The bulge chasing step is then followed by a second AED step and
the same procedure is repeated until all eigenvalues have been deflated or an iteration limit is reached.

Similarly, the eigenvalue reordering phase is based on applying sequences of overlapping Givens rotations and small-sized
Householder reflectors to S. The Schur form S is essentially reordered in a bubble sort manner using kernels that swap two
adjacent diagonal blocks23.
If the Givens rotations and small-sized Householder reflectors are applied one by one, then memory is accessed as shown in

Figure 4a. This is grossly inefficient for two reasons: i) the transformations are so localized that parallelizing them would not
produce any significant speedup and ii) the matrix elements are touched only once leading to very low arithmetic intensity. The
modern approach (see References19,20,21,22,24,25 and the references therein) groups together a set of local transformations and
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(a) Individual scalar updates. (b) Localized updates inside a window. (c) BLAS-3 off-diagonal updates.

(d) Concurrent windows in ScaLA-
PACK.

(e) Concurrent windows in StarNEig.

FIGURE 4 Hypothetical snapshots taken during the bulge chasing step of the Schur reduction phase. The currently active
regions are highlighted with darker shade and the propagation directions of the off-diagonal updates are marked with arrows. In
(a), the overlap between two overlapping transformations is highlighted with dashed lines. In (b) and (c), the overlap between
two diagonal windows is highlighted with dashed lines. In (d) and (e), the dashed lines illustrate how the matrix is divided into
distributed blocks.

initially applies them to a relatively small diagonal window as shown in Figure 4b. The localized transformations are accumulated
into an accumulator matrix and later propagated as BLAS-3 operations acting on the off-diagonal sections of the matrix as shown
in Figure 4c. This leads to much higher arithmetic intensity and enables proper parallel implementations as multiple diagonal
windows can be processed concurrently. These are the main reasons why the multi-shift QR algorithm introduces several 3 × 3
bulges to the diagonal. The 3×3 bulges are divided into groups and each group is chased separately down the diagonal. A set, or
a chain (see Reference26), of overlapping diagonal windows is associated with each group. Similarly, several selected diagonal
blocks can be grouped and moved together in the eigenvalue reordering phase24,25,27.
The Schur reduction and eigenvalue reordering phases are implemented in ScaLAPACK as the PDHSEQR21 and the PDTRSEN25

subroutines, respectively. Following the ScaLAPACK convention, the matrices are distributed in a two-dimensional block cyclic
fashion28. The resulting memory access pattern is illustrated in Figure 4d for a 3 × 3 MPI process mesh. In this example, three
diagonal windows can be processed simultaneously. The related BLAS-3 off-diagonal updates require careful coordination since
the left and right hand side updates must be performed in a sequentially consistent order. In practice, this means (global or
row/column communicator broadcast) synchronization after each set of BLAS-3 off-diagonal updates have been applied. In
addition, each AED step introduces a global synchronization point.
In StarNEig, the Schur reduction bulge chasing step and the eigenvalue reordering phase are implemented with the following

tasks types:
Window task generates and applies a set of local transformations inside a diagonal window. Takes the intersecting tiles as

input, and produces updated tiles and an accumulator matrix as output.
Right update task applies accumulated right-hand side updates using BLAS-3 operations. Takes the intersecting tiles and an

accumulator matrix as input, and produces updated tiles as output.
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Left update task applies accumulated left-hand side updates using BLAS-3 operations. Takes the intersecting tiles and an
accumulator matrix as input, and produces updated tiles as output.
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FIGURE 5 A hypothetical task graph arising from a situation where a set of three bulges is chased down the diagonal. We have
simplified the graph by omitting dependences between the left (L) and right (R) update tasks as these dependences are enforced
through the diagonal bulge chasing tasks (W). Note that the actual bulge chasing step involves several sets of bulges and the
resulting task graph is therefore significantly more complex than the simplified graph presented here.

The tasks are inserted into the runtime system in a sequentially consistent order and each chain of overlapping diagonal win-
dows leads to a task graph like the one shown in Figure 5. Note that real live task graphs are significantly more complex than
shown here, but also enclose more opportunities for parallelism. It is also critical to realize that the runtime system guarantees
that the tasks are executed in a sequentially consistent order. In particular, there is no need for explicit synchronization and dif-
ferent computational steps are allowed to overlap (see Figure 4e) as the runtime system merges the corresponding sub-graphs
together. This can lead to a much higher concurrency since idle time can be reduced by delaying low priority tasks until compu-
tational resources start becoming idle. This is exactly what can be observed from Figure 6a where a subset of the right-hand side
updates are given lower priority and are therefore scheduled only after the diagonal bulge chasing tasks and the left-hand side
update tasks cannot saturate all available computational resources. This is possible because, as seen in Figure 5, most right-hand
side update tasks do not feed back to the other sections of the task graph and can therefore be scheduled independently.
TheAED step can also be overlappedwith the bulge chasing steps as shown in Figures 6b and 7. This improves the concurrency

significantly compared to ScaLAPACK because the ScaLAPACK implementation will effectively synchronize before and after
each AED step. This means that in ScaLAPACK most MPI ranks will become idle while a subset of the MPI ranks are involved
in the AED step. Actually, StarNEig can even overlap two bulge chasing steps with each other as seen in Figures 6b. A complete
illustration is available on YouTube29. See the NLAFET Deliverable Reports D2.530, D2.618, D2.78 and D6.531 for further
information.

4.3 Robust computation of eigenvectors
Mathematically, the problem of computing a single eigenvector of, say, a quasi-triangular matrix is trivial. The standard
algorithm is a variant of substitution. However, substitution is very vulnerable to floating-point overflow. In particular, there
exist triangular linear systems which are well-conditioned in the sense of Skeel for which the solution grows exponentially and
rapidly exceeds the representational range of any floating-point number system32. We say that an algorithm or a subroutine is
robust if all intermediate and final results are in the representational range, i.e., floating point overflow is avoided. In LAPACK
there exists a robust family xLATRS of subroutines for solving triangular linear system Tx = b33. They dynamically scale the
entire right-hand side and return a scaling factor � and a vector x such that Tx = �b. The purpose of the scaling factor � is
to extend the floating-point representational range. In LAPACK, the solvers for computing eigenvectors from Schur forms are
all descended from xLATRS. They are scalar codes which compute the eigenvectors one by one. The back-transformation to the
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(a) The first bulge chasing step with delayed right-hand side updates. (b) The second AED step overlapping with two bulge chasing steps.

FIGURE 6 Snapshots taken during the first two iterations of the multi-shift QR algorithm with AED. The numbering matches
the numbering in Figure 7. That is, (1) is the bulge chasing step from the first iteration, (2) is the small-sizedHessenberg reduction
from the second AED step and (3) is the bulge chasing step from the second iteration. Note that the three steps are merged in (b).
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FIGURE 7 An illustration of the first two iterations of the multi-shift QR algorithm with AED. The steps that are concurrently
active in Figure 6b are highlighted in bold and numbered correspondingly. Contrast with Figure 3.



Mirko Myllykoski and Carl Christian Kjelgaard Mikkelsen 11

original basis can of course be done using BLAS-3 operations. In ScaLAPACK, there is no parallel implementation of xLATRS
and the solvers for computing eigenvectors are not robust.
In contrast, StarNEig implements novel algorithms for computing eigenvectors which are tiled, parallel and robust. In

StarNEig, each matrix of eigenvectors is partitioned into tiles Xij . Every tile X =
[

x1 x2 ⋯ xk
] is augmented with a vector of

scaling factors � ∈ ℝk with one scaling factor per column. The augmented tile ⟨�,X⟩ represents the matrix Y =
[

y1 y2 ⋯ yk
]

given by yj = xj∕�j . The StarNEig solvers for computing eigenvectors accept and produce augmented tiles. This allows
StarNEig to obtain a representation of the eigenvectors without exceeding the representational range. A final post-processing step
ensures that all segments of each eigenvector are consistently scaled. In reality, StarNEig is exploiting a principle which is famil-
iar to every scientist: Two results can be combined if we know how to convert between the different system of measurements,
say, the metric system and the imperial system.
The use of augmented tiles is compatible with the linear updateZ ← Y −TX and the vast majority of the arithmetic operations

can be completed using BLAS-3 operations. Given a matrix T and two augmented tiles ⟨�,X⟩ and ⟨�, Y ⟩, such that Y − TX is
defined, StarNEig produces an augmented tile ⟨
, Z⟩ which represents the intended result, i.e.,


−1j zj = �−1j yj − �−1j Txj . (11)
This is achieved as follows. A preprocessing step ensures that each pair (xj , yj) of columns ofX and Y are not only consistently
scaled, but the linear update zj = yj − Txj can be computed without exceeding the overflow threshold. If X, Y and T are
n × n matrices, then this preprocessing step requires O(n2) operations. Then the linear update Z ← Y − TX is executed using
a single BLAS-3 operation. We emphasize that the cost of the preprocessing step is insignificant compared with the O(n3)
arithmetic operations required for the linear update. Rescaling vectors to obtain a consistent scaling requires that the scaling
factors are nonzero. Otherwise, a division-by-zero is attempted. In StarNEig, the possibility of the scaling factors underflowing
is significantly reduced by using scaling factors which are integer powers of 2. Currently StarNEig uses at least 32 bit signed
integers, for which the smallest scaling factor is � = 2−231+1 ≈ 10−6.4646 ⋅ 108 , but this can easily be extended to the point where
underflow is a practical impossibility using 64 bit unsigned integers.
The main benefits that stem from the task-based approach are the merging of different computational steps and the improved

load balancing. Additional information can be found in the existing literature. In particular, the fundamental principles for solving
triangular linear systems in parallel without suffering from overflow are discussed in References32,34. The StarNeig solvers for
computing standard and generalized eigenvectors are the subjects of separate papers35,36.

5 STARNEIG LIBRARY

StarNEig is a C-library that runs on top of the StarPU task-based runtime system. StarPU handles low-level operations such as
heterogeneous scheduling, data transfers and replication between memory spaces and MPI communication between compute
nodes. In particular, StarPU is responsible for managing the various computational resources such as CPU cores and GPUs. The
support for GPUs and distributed memory were the main reasons why StarPU was chosen as the runtime system.
StarPU manages a set of worker threads; usually one thread per computational resource. In addition, one thread is responsible

for inserting the tasks into StarPU and tracking the state of the machine. If necessary, one additional thread is allocated for MPI
communication. For these reasons, StarNEig must be used in a one process per node (1ppn) configuration, i.e., several CPU
cores should be allocated for each MPI process (a node can be a full physical node, a NUMA island or some other reasonably
large collection of CPU cores).
The current status of StarNEig is summarized in Table 2. The Experimental status indicates that the software component has

not been tested as extensively as those software components that are considered Complete. In particular, the GPU functionality
requires some additional involvement from the user (performance model calibration). At the time of writing this paper, only
real arithmetic is supported and certain interface functions are implemented as LAPACK and ScaLAPACK wrapper functions.
However, we emphasize that StarNEig supports real valued matrices that have complex eigenvalues and eigenvectors. Additional
distributed memory functionality and support for complex data types are planned for a future release.
Remark 2. StarNEig uses several LAPACK routines as low-level kernels, the most complex one of them being the DHSEQR rou-
tine that is used to solve tiny eigenvalue problems sequentially, but StarNEig does not reuse any LAPACK code. StarNEig does
not reuse nor call any ScaLAPACK routines, excluding the wrapper functions listed in Table 2 and certain interface functions
that are related to the ScaLAPACK compatibility layer (see Subsection 5.2). In particular, StarNEig can be compiled without
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TABLE 2 Current status of the StarNEig library (version 0.1.1).
Computational phase Shared memory Distributed memory GPUs (CUDA)
Hessenberg reduction Complete ScaLAPACK Single GPU
Schur reduction Complete Complete Experimental
Eigenvalue reordering Complete Complete Experimental
Eigenvectors Complete In progress ⋅
Hessenberg-triangular reduction LAPACK ScaLAPACK ⋅
Generalized Schur reduction Complete Complete Experimental
Generalized eigenvalue reordering Complete Complete Experimental
Generalized eigenvectors Complete In progress ⋅

ScaLAPACK. The NLAFET Deliverable Report D2.618 mentions the reuse of some sequential ScaLAPACK code in early pro-
totype codes, but these components have since been replaced with code that has been written from the scratch in C. We have not
used Fortran-to-C compilers.

5.1 Distributed memory
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FIGURE 8 Examples of various data distributions supported by StarNEig, including two-dimensional block cyclic distribution
(2D-BCD).

StarNEig distributes the matrices in rectangular blocks of uniform size (excluding the last block row and column) as illustrated
in Figure 8a. The data distribution, i.e., the mapping from the distributed blocks to the MPI process rank space, can be arbitrary
as illustrated in Figure 8b. A user has three options:

1. Use the default data distribution. This is recommended for most users and leads to reasonable performance in most
situations.

2. Use a two-dimensional block cyclic distribution (see Figure 8c). In this case, the user may select the MPI process mesh
dimensions and the rank ordering.

3. Define a data distribution function d ∶ ℤ+ × ℤ+ → ℤ+ that maps the block row and column indices to the MPI rank
space. For example, in Figure 8b, rank 0 owns the blocks (0,1), (1,2), (1,5), (1,6), (2,6), (3,0) and (3,5).

The library implements copy, scatter and gather operations that support data redistribution between all supported distributions.
Users who are familiar with ScaLAPACK are likely accustomed to using relatively small distributed block sizes (between

64–256). In contrast, StarNEig functions optimally only if the distributed blocks are relatively large (at least 1000 but preferably
much larger). This is due to the fact that StarNEig further divides the distributed blocks into tiles and a tiny tile size leads to
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excessive task scheduling overhead because the tile size is closely connected to the task granularity. Furthermore, asmentioned in
the preceding section, StarNEig should be used in 1ppn configuration as opposed to a one process per core (1ppc) configuration
which is common with ScaLAPACK.

5.2 ScaLAPACK compatibility
StarNEig is fully compatible with ScaLAPACK and provides a ScaLAPACK compatibility layer that encapsulates BLACS
contexts and descriptors (see the BLACS User’s Guide28) inside transparent objects, and implements a set of bidirectional
conversion functions. The conversions are performed in-place and do not modify any of the underlying data structures. Users
can mix StarNEig interface functions with ScaLAPACK routines without intermediate conversions. The use of the ScaLAPACK
compatibility layer requires the use of either the default data distribution or the two-dimensional block cyclic data distribution.
Listing 1 illustrates how a distributed StarNEig matrix is converted to an equivalent BLACS context and a matching local buffer.
The matrix is then reduced to upper Hessenberg form by calling the PDGEHRD routine from ScaLAPACK. This is actually how
the ScaLAPACK wrapper functions are implemented in StarNEig, see Table 2.

Listing 1: An example how a distributed matrix is converted to a BLACS descriptor and a local buffer.
/ / c r e a t e a 2D b l o c k c y c l i c da ta d i s t r i b u t i o n (pm x pn p r o c e s s mesh )
s t a r n e i g _ d i s t r _ t d i s t r =

s t a r n e i g _ d i s t r _ i n i t _ m e s h (pm , pn , STARNEIG_ORDER_DEFAULT ) ;

/ / c r e a t e an n x n d i s t r i b u t e d m a t r i x ( bn x bn b l o c k s )
s t a r n e i g _ d i s t r _ m a t r i x _ t dA =

s t a r n e i g _ d i s t r _ m a t r i x _ c r e a t e ( n , n , bn , bn , STARNEIG_REAL_DOUBLE, d i s t r ) ;

. . .

/ / c o n v e r t t h e da ta d i s t r i b u t i o n t o a BLACS c o n t e x t
s t a r n e i g _ b l a c s _ c o n t e x t _ t c t x = s t a r n e i g _ d i s t r _ t o _ b l a c s _ c o n t e x t ( d i s t r ) ;

/ / c o n v e r t t h e d i s t r i b u t e d m a t r i x t o a BLACS d e s c r i p t o r and a l o c a l b u f f e r
s t a r n e i g _ b l a c s _ d e s c r _ t descr ;
double ∗ ptr ;
s t a r n e i g _ d i s t r _m a t r i x _ t o _ b l a c s _ d e s c r (dA , ctx , &descr , ( void ∗∗)&ptr ) ;

/ / ScaLAPACK r o u t i n e f o r r e d u c i n g a g e n e r a l d i s t r i b u t e d m a t r i x t o upper
/ / Hessenberg form
e x t er n void pdgehrd_ ( i n t c o n s t ∗ , i n t c o n s t ∗ , i n t c o n s t ∗ , double ∗ ,

i n t c o n s t ∗ , i n t c o n s t ∗ , s t a r n e i g _ b l a c s _ d e s c r _ t c o n s t ∗ , double ∗ ,
double ∗ , i n t c o n s t ∗ , i n t ∗ ) ;

pdgehrd_ (&n , &i l o , &i h i , ptr , &ia , &ja , &descr , t au , . . . ) ;

6 PERFORMANCE EVALUATION

This section demonstrates the performance of the StarNEig library though a set of computational experiments.
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Hardware environment
Computational experiments were performed on the Kebnekaise system, located at the High Performance Computing Center
North (HPC2N), Umeå University. Kebnekaise is a heterogeneous systems consisting of many different types of compute nodes.
The compute node types relevant for this paper are:
Broadwell compute node contains 28 Intel Xeon E5-2690v4 cores organized into 2 NUMA islands with 14 cores each and

128 GB memory. The nodes are connected with FDR Infiniband. All distributed memory experiments were performed on
these nodes.

Skylake compute node contains 28 Intel Xeon Gold 6132 cores organized into 2 NUMA islands with 14 cores each and 192
GB memory. All Hessenberg reduction experiments were performed on these nodes.

Large memory node contains 72 Intel Xeon E7-8860v4 cores organized into 4 NUMA islands with 18 cores each and 3072
GB memory. All eigenvector experiments were performed on these nodes.

V100 GPU node contains 28 Intel Xeon Gold 6132 cores organized into 2 NUMA islands with 14 cores each and 192 GB
memory. Each NUMA island is connected to a single NVIDIA Tesla V100 GPU. All GPU experiments were performed
on these nodes.

Software environment
For the distributed memory and eigenvalue reordering related GPU experiments, the software was compiled with GCC 7.3.0
and linked to OpenMPI 3.1.3, OpenBLAS 0.3.2, ScaLAPACK 2.0.2, CUDA 9.2.88, and StarPU 1.2.8. Since the version of the
PDHSEQR routine that exists in ScaLAPACK 2.0.2 is known to be buggy, StarNEig was actually compared against an updated
version of PDHSEQR; see Reference21. The updated version places far less strict conditions on the distributed block size and thus
performs better on modern hardware. For the Hessenberg reduction and eigenvector computation experiments, the software was
compiled with ICC 19.0.1.144 and linked to Intel MPI 2018.4.274, Intel MKL 2019.1.144, CUDA 10.1.105 and StarPU 1.2.8.
In all experiments, StarPU was compiled with the --disable-cuda-memcpy-peer configuration flag enabled as this reduces
the CUDA overhead.
StarNEig version
In most experiments, StarNEig version 0.1-beta.2 was used. However, the Schur reduction and eigenvalue reordering experi-
ments in distributed memory were performed using an older and unpublished version of StarNEig. The main difference between
this unpublished version and the version 0.1-beta.2 is the deflation condition used in the Schur reduction phase. The deflation
condition is used to decide when an eigenvalue can be deflated and thus impacts the convergence rate of the algorithm. The
unpublished version uses a deflation condition that is identical to the one used in LAPACK and PDHSEQR whereas the version
0.1-beta.2 uses the so-called norm stable deflation condition19,20. The latter deflation condition is less strict and could thus
potentially lead to faster convergence. Newer versions of StarNEig (since version 0.1-beta.4) allow the user to choose between
these two deflation conditions.

6.1 Hessenberg reduction in shared memory with and without a GPU
Table 3 shows how the Hessenberg reduction routine in StarNEig compares against MKL-LAPACK (with parallel BLAS),
MKL-ScaLAPACK (multiple MPI ranks on single physical node) andMAGMA7,17. StarNEig does not have multi-GPU support
in the Hessenberg reduction phase (as mentioned in Table 2). Therefore, only a single GPU and the associated NUMA island was
used in the GPU experiments. The additional cores from the second NUMA island would only have had a minimal effect since
the algorithm is memory-bound and the 14 AVX-512 capable CPU cores from a single NUMA island can execute the compute-
bound BLAS-3 operations faster than the GPU can execute the memory-bound BLAS-2 operations. Spreading the computations
across two NUMA islands might actually have slowed the computations and it is more difficult to configure several NUMA
islands together with the GPU. The STARPU_WORKERS_CPUID environmental variable was set to 0 14 1 15 2 16 [...].
Since the implementations in all four libraries are based on the standard algorithm16, the performance is limited by the

throughput of the matrix-vector multiplication routine. It is therefore important that the memory access pattern is optimized.
In particular, a memory access to a NUMA island that is not local to a particular core is very likely to reduce the performance
since the obtainable memory bandwidth is significantly lower compared to a local access. A memory access pattern that is
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TABLE 3 A run time comparison (in seconds) between parallel MKL-LAPACK, MKL-ScaLAPACK, MAGMA and StarNEig
when computing a Hessenberg form in shared memory. Columns 2-4 show the execution times for 28 Intel Xeon Gold 6132
cores and columns 5-6 show the execution times for 14 Intel Xeon Gold 6132 cores paired with a NVIDIA Tesla V100 GPU.

28 cores 14 cores + V100 GPU
n LAPACK ScaLAPACK StarNEig MAGMA StarNEig

5 000 3.8 4.2 8.4 1.3 2.2
10 000 32 29 40 7.3 8.9
15 000 113 95 117 23 24
20 000 278 223 249 49 53
25 000 561 459 454 90 97
30 000 953 728 755 144 164
40 000 2397 1722 1711 — —

close to optimal is easy to achieve with ScaLAPACK since each MPI process accesses its own local buffer and this buffer
can be allocated from the NUMA island that is closest to the core to which the MPI process is bound. For the other CPU
experiments, the memory was allocated in interleaved mode across the two NUMA islands in order to evenly distribute the
load. Since the matrix-vector multiplication operation is memory bound, it is not surprising that StarNEig closely matches the
performance ofMKL-LAPACK,MKL-ScaLAPACK andMAGMA. It is only in the case of the smallest matrix consideredwhere
the additional task scheduling related overhead begins to negatively impact StarNEig’s performance. The additional memory
locality considerations in StarNEig begin to show their effect when the matrices are reasonably large, leading in some cases to
a 40% performance improvement compared to MKL-LAPACK.

6.2 Schur reduction and eigenvalue reordering in distributed memory
All distributed memory experiments were performed using a square MPI process mesh. This was done because the maximum
number of diagonal bulge chasing and reordering windows in the PDHSEQR and PDTRSEN routines is given bymin(pm, pn), where
pm and pn are the height and width of the process mesh, respectively. A square process mesh thus maximizes the degree of
parallelism in the ScaLAPACK routines. We always map each StarNEig process to a full node (28 cores) and each ScaLAPACK
process to a single CPU core, the latter being done for the same reason as the choice to use a square process mesh. Since
it is not straightforward to find a CPU core allocation that would lead to a square MPI process mesh in both configurations,
the number of CPU cores in each ScaLAPACK experiment is always equal or larger than the number of CPU cores in the
corresponding StarNEig experiment. The upper Hessenberg matrices for the Schur reduction experiments were computed from
random matrices (entries uniformly distributed over the interval [−1, 1]). In the ScaLAPACK experiments, the matrices were
distributed in 160 × 160 blocks, and in the StarNEig experiments, the library default block size was used. In the eigenvalue
reordering experiments, 35% of the diagonal blocks were randomly selected. The distributed memory experiments were initially
reported in the NLAFET Deliverable Report D2.78 and the original conference paper9.
Comparison against ScaLAPACK
Table 4 shows a comparison between ScaLAPACK and StarNEig.We note that StarNEig is between 1.6 and 2.9 times faster than
ScaLAPACK (PDHSEQR) when computing the Schur form and between 2.8 and 5.0 times faster than ScaLAPACK (PDTRSEN)
when reordering the Schur form.
Strong scalability
Figures 9a and 9b give some idea of how well the library scales in distributed memory. We note that StarNEig scales reasonably
when computing the Schur form and almost linearly when reordering the Schur form. The iterative nature of the QR algorithm
makes the Schur reduction results less predictable because different matrices require different numbers of bulge chasing steps.
That is, with some matrices, the algorithm ends up performing more consecutive AED steps between the bulge chasing steps,
thus leading to a faster convergence rate but weaker scalability as each AED step is performed on a single node.
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TABLE 4 A run time comparison (in seconds) between ScaLAPACK and StarNEig in distributed memory. Each node contains
28 Intel Xeon E5-2690v4 cores.

CPU cores Schur reduction Eigenvalue reordering
n ScaLAPACK StarNEig ScaLAPACK StarNEig ScaLAPACK StarNEig

10 000 36 28 38 18 12 3
20 000 36 28 158 85 72 25
40 000 36 28 708 431 512 180
60 000 121 112 992 563 669 168
80 000 121 112 1667 904 1709 391
100 000 121 112 3319 1168 3285 737
120 000 256 252 3268 1111 2902 581
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(b) Eigenvalue reordering.

FIGURE 9 Distributed memory scalability of StarNEig when computing and reordering a Schur form. Each node contains 28
Intel Xeon E5-2690v4 cores.

6.3 Eigenvalue reordering in shared memory with multiple GPUs
Figure 10 demonstrates that StarNEig can indeed take advantage of the available GPUs when reordering a Schur form, as long as
the matrices are reasonably large. The introduction of a single V100 GPU gives a speedup of up to 1.65 and the introduction of
two V100 GPUs gives a speedup of up to 2.84. In the best case, the speedup when moving from a single V100 GPU to two V100
GPUs is 1.83. This experiment was initially reported in the NLAFET Deliverable Report D2.78 and the original conference
paper9.

6.4 Computation of the eigenvectors in shared memory
Table 5 shows how the eigenvector computation routine in StarNEig compares against MKL-LAPACK (with parallel BLAS).
In all experiments, 35% of the eigenvalues were randomly selected. In single core experiments, StarNEig is between 3.4 and
4.9 times faster than MKL-LAPACK. This demonstrates how efficient the tiled approach is compared to the scalar implemen-
tation that exists in LAPACK. Furthermore, the multi-core experiments demonstrate the poor scalability of the MKL-LAPACK
implementation. In particular, the initial solve phase (5) is executed sequentially and the back transformation phase (6), which is
executed in parallel, constitutes only a small fraction of the total execution time. The implementation in StarNEig, on the other
hand, demonstrates a very good scalability. In particular, for the larger matrices (n ≥ 40 000) the parallel efficiency stays above
70% all the way up to 64 cores. In the most extreme case StarNEig is over 190 times faster than MKL-LAPACK.
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FIGURE 10 GPU performance of StarNEig when reordering a Schur form. Each socket (14 Intel Xeon Gold 6132 cores) is
connected to one NVIDIA Tesla V100 GPU.

TABLE 5A run time comparison (in seconds) betweenMKL-LAPACK and StarNEig when computing 35% of the eigenvectors.
Run times that are longer than four hours are not tabulated.

LAPACK StarNEig
n \ cores 1 16 32 48 64 1 16 32 48 64
10 000 95 80 80 80 80 28 2.3 1.4 1.1 1.0
20 000 784 672 694 673 668 194 15 8.1 5.9 5.3
40 000 6731 5826 5681 5608 5743 1364 98 53 38 30
60 000 — — — — — 4231 315 167 116 90
80 000 — — — — — 9221 693 359 252 194
100 000 — — — — — — 1325 698 483 369
120 000 — — — — — — 2226 1194 833 647

7 SUMMARY

This paper presented a new library called StarNEig. StarNEig aims to provide a complete task-based software stack for solving
dense nonsymmetric standard and generalized eigenvalue problems. StarNEig support both shared and distributed memory
machines and some routines in the library can take advantage of the available GPUs. The paper is mainly aimed at potential users
of the library. Various design choices were explained and contrasted to existing software. In particular, users who are already
familiar with ScaLAPACK should know the following:

• StarNEig expect that the matrices are distributed in relatively large blocks compared to ScaLAPACK.
• StarNEig should be used in a one process per node (1ppn) configuration as opposed to a one process per core (1ppc)

configuration which is common with ScaLAPACK.
• StarNEig implements a ScaLAPACK compatibility layer.
The performance of the library was demonstrated with a set of computational experiments. The presented results show the

following: In the Hessenberg reduction phase, StarNEig is competitive with LAPACK, ScaLAPACK (multiple MPI ranks on a
single physical node) andMAGMA (single GPU). In the Schur reduction phase, StarNEig is between 1.6 and 2.9 times faster than
ScaLAPACK. In the eigenvector computation phase, StarNEig’s parallel and robust implementation significantly outperforms
LAPACK in both single-core and multi-core settings with recorded speedups as large as 190. In the eigenvalue reordering phase,
StarNEig is between 2.8 and 5.0 times faster than ScaLAPACK and scales nearly linearly.
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The library is still incomplete. Future work with StarNEig includes the implementation and integration of the missing software
components. Support for complex valued matrices is also planned. The GPU support, and the multi-GPU support in particular,
are still under active development. The authors hope to start a discussion which would help guide and prioritize the future
development of the library.
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