
H2020–FETHPC–2014: GA 671633

D2.7

Eigenvalue solvers for
nonsymmetric problems

April 2019

NLAFET D2.7: Eigenvalue problem solvers

Document information

Scheduled delivery 2019-04-30
Actual delivery 2019-04-29
Version 1.0
Responsible partner UMU

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
2019-02-18 Bo Kågström Draft 0.1 First layout of structure.
2019-03-11 Bo Kågström Draft 0.2 Introduction and structure, more

text added.
2019-04-15 Mirko Myllykoski Draft 0.3 Results from computational experi-

ments, reorganized structure, more
text added. For internal review.

2019-04-29 Mirko Myllykoski Final 1.0 Missing data points and GPU results
added, internal review comments ad-
dressed. Final version.

Author(s)

Mirko Myllykoski (UMU)
Carl Christian Kjelgaard Mikkelsen (UMU)
Angelika Schwarz (UMU)
Bo Kågström (UMU)

Internal reviewers

Jan Papez (INRIA)
Srikara Pranesh (UNIMAN)

Copyright

This work is c© by the NLAFET Consortium, 2015–2019. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/28

NLAFET D2.7: Eigenvalue problem solvers

Table of Contents
1 Introduction 4

2 Current status of the software 5

3 Experimental setting 6

4 Reduction to Hessenberg or Hessenberg-triangular forms 9

5 Reduction to standard or generalized Schur forms 10

6 Eigenvalue reordering and invariant subspaces 17

7 Computation of selected eigenvectors 22

8 Summary and some conclusions 27

List of Figures
1 An illustration of the experimental data flow. 6
2 Illustrations of CPU core mappings and data distributions. 8
3 An illustration of a single iteration of the multishift QR algorithm. 11
4 An illustration of a parallel AED step. 12
5 Relative run-time improvement with respect to PDHSEQR. 13
6 Scalability results for starneig_SEP_DM_Schur. 14
7 Relative run-time improvement with respect to PDHGEQZ. 16
8 Scalability results for starneig_GEP_DM_Schur. 16
9 Relative run-time improvement with respect to PDTRSEN. 19
10 Scalability results for starneig_SEP_DM_ReorderSchur. 20
11 Relative run-time improvement with respect to PDTGSEN. 20
12 Scalability results for starneig_GEP_DM_ReorderSchur. 21
13 GPU performance results for starneig_SEP_SM_ReorderSchur. 21
14 An illustration of computing eigenvectors from real Schur forms 23
15 Scalability results for starneig_SEP_SM_Eigenvectors (35% selected). . . 24
16 Scalability results for starneig_SEP_SM_Eigenvectors (100% selected). . 25
17 Scalability results for starneig_GEP_SM_Eigenvectors (35% selected). . . 26
18 Scalability results for starneig_GEP_SM_Eigenvectors (100% selected). . 26

List of Tables
1 Current status of the StarNEig library for standard eigenvalue problems. 5
2 Current status of the StarNEig library for generalized eigenvalue problems. 5
3 Residuals after computing Hessenberg forms. 10
4 Residuals after computing Hessenberg-triangular forms. 10
5 A comparison between PDHSEQR and starneig_SEP_DM_Schur. 12
6 A comparison between PDHGEQZ and starneig_GEP_DM_Schur. 14
7 The number of infinite and indefinite eigenvalues. 15
8 A comparison between PDTRSEN and starneig_SEP_DM_ReorderSchur. . . 18

http://www.nlafet.eu/ 2/28

NLAFET D2.7: Eigenvalue problem solvers

9 A comparison between PDTGSEN and starneig_GEP_DM_ReorderSchur. . . 18
10 Run-times and residuals for starneig_SEP_SM_Eigenvectors. 24
11 Run-times and residuals for starneig_GEP_SM_Eigenvectors 25

http://www.nlafet.eu/ 3/28

NLAFET D2.7: Eigenvalue problem solvers

1 Introduction
The Description of Action document states for deliverable D2.7:

“D2.7 Eigenvalue solvers for nonsymmetric problems
Evaluation of new eigenvalue solvers for the nonsymmetric eigenvalue problem,
including Krylov methods.”

This deliverable is in the context of Task 2.3 (Eigenvalue problem solvers). The report
builds and extends on the deliverables D2.5 Eigenvalue problem solvers and D2.6 Prototype
software for eigenvalue problem solvers. Given A ∈ Rn×n the standard eigenvalue problem
(SEP) consists of computing eigenvalues λ ∈ C (possibly including zero) and eigenvectors
x ∈ Cn such that

Ax = λx. (1)

Given A ∈ Rn×n and B ∈ Rn×n the generalized eigenvalue problem (GEP) consists of
computing λ ∈ C ∪ {∞} and eigenvectors x ∈ Cn×n such that

Ax = λBx. (2)

In our case, A and B are dense and nonsymmetric matrices. Our goal is provide soft-
ware which can compute all eigenvalues as well as invariant subspaces and/or eigenvectors
associated with the user’s selection of eigenvalues. We rely on an established approach
which has been successful in the past: the application of two sided transformation algo-
rithms acting on A or (A,B), respectively. We generalize and extend this to novel and
effective task-based algorithms. The solution process for the above types of eigenvalue
problems includes the following main steps:

Step 1 Reduction to condensed forms (Hessenberg or Hessenberg-triangular forms)

=

Step 2 Reduction to (standard or generalized) Schur forms

=

Step 3 Eigenvalue reordering and subspaces (invariant or deflating subspaces)

=

Step 4 Computation of eigenvectors (associated with SEP or GEP)

= 0
λ

-()λλλλλ

http://www.nlafet.eu/ 4/28

NLAFET D2.7: Eigenvalue problem solvers

Table 1: Current status of the StarNEig library for standard eigenvalue problems.

Step Shared memory Distributed memory GPUs
Hessenberg Complete ScaLAPACK Single GPU
Schur Complete Experimental Experimental
Reordering Complete Complete Experimental
Eigenvectors Complete Integration ongoing Not planned

Table 2: Current status of the StarNEig library for generalized eigenvalue problems.

Step Shared memory Distributed memory GPUs
Hessenberg LAPACK ScaLAPACK Not planned
Schur Complete Experimental Experimental
Reordering Complete Complete Experimental
Eigenvectors Complete Integration ongoing Not planned

The algorithms for Steps 1, 2, and 3 are based on two-sided matrix transformations
(i.e., multiplicative updates applied from both the left and the right on A or (A,B)).
This approach often leads to complex data dependencies and limited concurrency. This
is especially true for Step 2: the (iterative) multishift QR [5, 6, 8, 9] and QZ algorithms
where the convergence is accelerated using Aggressive Early Deflation (AED) [3, 4, 10].
In contrast, the data dependencies in Step 4 are rather simple, but there are numerical
issues which are nontrivial to address in a parallel setting. Altogether, the computations
performed in Steps 1–4 can be challenging to run efficiently on today’s and future extreme-
scale HPC systems.

In this final deliverable of Task 2.3, we report progress on medium- to large-scale
dense nonsymmetric eigenvalue problems, SEP and GEP. Relevant introductory material
is covered in deliverables D2.5 and D2.6. The rest of the report is outlined as follows:
Section 2 summarizes the current status of the software, including progress since D2.5 and
D2.6. Section 3 describes the experimental setup as well as the hardware. Sections 4, 5,
6, and 7 cover the Steps 1, 2, 3, and 4, respectively. Summary and some final conclusions
are given in Section 8.

2 Current status of the software
The new software evaluated in this report is available as the StarNEig library though the
NLAFET GitHub platform https://github.com/NLAFET/StarNEig1. The StarNEig li-
brary is currently in a beta state and supports real arithmetic. Algorithmically, real
arithmetic is more challenging than complex arithmetic due to the need to distinguish be-
tween real and pair of complex conjugate eigenvalues. See deliverable D7.8 Release of the
NLAFET library for the StarNEig User Guide as well as algorithmic and implementation
details.

The overall status of the library is summarized in Table 1 (SEP) and Table 2 (GEP).
The Experimental status indicates that the software component has not been tested as
extensively as those software components that are considered Complete. In addition,
the GPU functionality requires some additional involvement from the user (performance

1The delivered software is available as version 0.1-beta.2 at https://github.com/NLAFET/
StarNEig/releases/tag/v0.1-beta.2.

http://www.nlafet.eu/ 5/28

NLAFET D2.7: Eigenvalue problem solvers

Step 1 Step 2

Step 3

Step 4

Figure 1: An illustration of the experimental data flow. The (generalized) Schur form is
either reordered (Step 2→ Step 3) or the (generalized) eigenvectors are computed directly
from it (Step 2 → Step 4).

model calibration). Known problems are listed in the StarNEig User Guide. Since D2.6,
the StarNEig library has gained a new unified Application Programming Interface (API)
and the functionality has been expanded. In particular, the library can now compute a
generalized Schur decomposition using the QZ algorithm and supports parallel AED in
QR and QZ. Functionality for computing both standard and generalized right-hand side
eigenvectors in shared memory has also been integrated into the library. Furthermore,
since D2.5, the library has gained the functionality to reorder the eigenvalues of a matrix
in generalized real Schur form. Some interface functions are implemented as LAPACK and
ScaLAPACK wrappers and the library thus now provides almost a full suite of functional-
ity for dealing with non-symmetric eigenvalue problems in both shared and distributed
memory, see Tables 1 and 2.

3 Experimental setting
Our main goal for this deliverable is to demonstrate that the StarNEig library can perform
all four steps correctly and efficiently. For this purpose, we have designed experiments
where we start from a set of matrices and matrix pairs and run them through all four
steps. The overall data flow is illustrated in Figure 1. The entries of these matrices and
matrix pairs were randomly generated and are uniformly distributed over the interval
[−1, 1]. We have found that this class of matrices behaves very nicely in the standard
case. In particular, the run-time is not sensitive to changes in random seed or to small
changes in dimension of the problem.

A much more extensive set of experiments involving matrices and matrix pairs from
real world applications would have provided a more comprehensive picture of the capa-
bilities of the StarNEig library. However, since two matrices of similar size, but different
origin, can exhibit drastically different convergence behaviour during Step 2, and Step 3
can actually fail in certain cases, we would have had to include significantly more matri-
ces and matrix pairs in order to obtain a representative sample. This would have been
too costly in terms of CPU core hours2 and man-hours. Furthermore, we would like to
point out that the generated eigenvalue problems are not trivial. In particular, the larger
generalized eigenvalue problems can become very ill-conditioned and can thus be used to
demonstrate that the StarNEig library can handle such problems.

2The production of this deliverable required in excess of 200 000 core hours.

http://www.nlafet.eu/ 6/28

NLAFET D2.7: Eigenvalue problem solvers

We also compare our task-based software against state-of-the-art MPI-based software
and demonstrate the scalability of our task-based software through scalability experi-
ments. Most computational experiments are performed in distributed memory.

As the Steps 1, 2 and 3 consist of series of similarity transformations of the form

A = QXQT (3)

or

A = QXZT and B = QY ZT , (4)

we must show that each step retains the similarity/equivalence. For this purpose, we
measure the following relative residuals after each step:

Rsep,A(X) = ||QXQ
T − A||F

u||A||F
, (5)

Rgep,A(X) = ||QXZ
T − A||F

u||A||F
, (6)

Rgep,B(Y) = ||QY Z
T −B||F

u||B||F
. (7)

Here, ||·||F is the Frobenius norm and u is the double precision floating-point unit roundoff
(u = 2−52 ≈ 2.22 · 10−16). In addition, we measure the loss of orthogonality as follows:

Rorth(U) = ||UU
T − I||F

u||I||F
. (8)

Note that the relative residuals are always computed with respect to the original ran-
dom matrix A or the original random matrix pair (A,B). In addition, the orthogonal
transformations Q and Z are accumulated across all steps.

For Step 4, we compute the following relative residual for each computed eigenpair
(λ, x):

Esep(λ, x) = ||Ax− λx||2
u(||A||F + |λ|)||x||2

. (9)

In the generalized case, all generalized eigenvalues are expressed as λ = α/β and the
computed relative residual is

Egep(λ, x) = ||Ax− λBx||2
u(||A||F + |λ|||B||F)||x||2

= ||βAx− αBx||2
u(|β|||A||F + |α|||B||F)||x||2

.

(10)

If the eigenvalue is zero (α = 0), we have

Esep(λ, x) = Egep(λ, x) = ||Ax||2
u||A||F ||x||2

. (11)

In the case of infinite eigenvalue, i.e., β = 0, we compute the relative residual as

Egep(λ, x) = ||Bx||2
u||B||F ||x||2

. (12)

http://www.nlafet.eu/ 7/28

NLAFET D2.7: Eigenvalue problem solvers

16

2

1

3

17 18 19 20 21 22 23

0

 8 9 10 11 12 13 14 15

 0 1 2 3 4 5 6 7

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

MPI ranks CPU core mapping Data distribution

ScaLAPACK

StarNEig

Figure 2: Illustrations of CPU core mappings and data distributions. With StarNEig
each MPI process is mapped to a full node (12 cores per node in this example). With
ScaLAPACK each MPI process is mapped to a single CPU core.

All computational experiments were performed on the Kebnekaise system, located at
the High Performance Computing Center North (HPC2N), Umeå University. Kebnekaise
is a heterogeneous systems consisting from many different types of compute nodes. The
compute node types relevant for this deliverable are:

Regular compute node contains 28 Intel Xeon E5-2690v4 cores organized into 2 NUMA
islands with 14 cores each and 128 GB memory. The nodes are connected with FDR
Infiniband.

Large memory node contains 72 Intel Xeon E7-8860v4 cores organized into four NUMA
islands with 18 cores each and 3072 GB memory.

V100 GPU node contains 28 Intel Xeon Gold 6132 cores organized into 2 NUMA is-
lands with 14 cores each and 192 GB memory. Each node contains two NVIDIA
Tesla V100 GPUs.

Most experiments were performed on the regular nodes but the eigenvector experiments
were performed on the large memory nodes and the GPU experiments on were performed
on the V100 GPU nodes. The software was compiled with GCC 7.3.0 compiler and linked
against OpenMPI 3.1.3, OpenBLAS 0.3.2, ScaLAPACK 2.0.2, CUDA 9.2.88, and StarPU
1.2.8 [1] libraries.

All distributed memory experiments were performed using a square MPI process grid3

and the matrices were distributed in two-dimensional block cyclic fashion as illustrated in
Figure 2. One major difference between StarNEig interface functions and ScaLAPACK-style
subroutines is that StarNEig is designed to run in a multi-threaded environment, while

3A square process grid usually leads to more consistent performance with ScaLAPACK-style subroutines.

http://www.nlafet.eu/ 8/28

NLAFET D2.7: Eigenvalue problem solvers

many ScaLAPACK-style subroutines perform optimally in a single-threaded environment.
This can create a conflict if we want to continue using a square MPI process grid since
finding a CPU core allocation that would lead to a square MPI process grid in both
approaches is not straightforward. Our solution is to always favour the ScaLAPACK-style
subroutine in the comparisons as illustrated in Figure 2. We always map each StarNEig
process to a full node (28 cores) and distributes the data in large blocks. We always map
each ScaLAPACK-style process to a single CPU core and distributes the data in 160× 160
blocks. The total number of CPU cores in each ScaLAPACK experiment is always equal or
larger than the total number of CPU cores in the corresponding StarNEig experiment.

4 Reduction to Hessenberg or Hessenberg-triangular
forms

Given a general matrix A, the StarNEig interface functions

• starneig_SEP_SM_Hessenberg() and

• starneig_SEP_DM_Hessenberg()

compute a Hessenberg decomposition

A = QHQT , (13)

where H is upper Hessenberg and Q is orthogonal.
Given a general matrix pair (A,B), the StarNEig interface functions

• starneig_GEP_SM_HessenbergTriangular() and

• starneig_GEP_DM_HessenbergTriangular()

compute a Hessenberg-triangular decomposition

A = QHZT , B = QRZT , (14)

where H is upper Hessenberg, R is upper triangular, and Q and Z are orthogonal.
The shared memory variant starneig_SEP_SM_Hessenberg is implemented on top of

StarPU and has already been discussed extensively in D2.6 (some of the reported GPU
performance issues were related to StarPU and have since been solved). The other vari-
ants are implemented as LAPACK and ScaLAPACK wrapper functions. Thus, only the
residuals after computing the Hessenberg and Hessenberg-triangular forms are reported
here; see Tables 3 and 4. We note that the residuals from Step 1 are quite small and thus
the generated Hessenberg and Hessenberg-triangular forms can be safely used as input
for Step 2.

http://www.nlafet.eu/ 9/28

NLAFET D2.7: Eigenvalue problem solvers

Table 3: Residuals after computing Hessenberg forms. Residuals are reported in multiples
of the double precision floating-point unit roundoff; see (5) and (8).

n Rsep,A(H) Rorth(Q)
10 000 36 20
20 000 50 27
40 000 34 20
60 000 55 24
80 000 50 20
100 000 55 22
120 000 52 19

Table 4: Residuals after computing Hessenberg-triangular forms. Residuals are reported
in multiples of the double precision floating-point unit roundoff; see (6), (7) and (8).

n Rgep,A(H) Rgep,B(R) Rorth(Q) Rorth(Z)
10 000 90 91 73 67
20 000 131 132 103 100
40 000 180 181 145 135
60 000 168 226 177 112
80 000 286 270 205 235

5 Reduction to standard or generalized Schur forms
We start by considering the standard eigenvalue problem. Given a Hessenberg decompo-
sition A = QHQT , the StarNEig interface functions

• starneig_SEP_SM_Schur() and

• starneig_SEP_DM_Schur()

compute a Schur decomposition

A = Q(USUT)QT , (15)

where the Schur matrix S is upper quasi-triangular with 1 × 1 and 2 × 2 blocks on the
block diagonal and U is orthogonal. On exit, Q is overwritten by Q← QU .

Both interface functions are implemented on top of StarPU. The shared memory vari-
ant starneig_SEP_SM_Schur was already discussed in D2.6 but major improvements have
been made since. In particular, D2.6 demonstrated that the sequential AED step (see
Figure 3) forms a bottleneck for the scalability of the algorithm. The AED step is now
implemented in a task-based manner and runs in parallel. The QR algorithm is recursive.
In particular, every AED step applies the QR algorithm and Hessenberg reduction to the
AED window. Both are handled by calls to StarNEig. The major new component is the
parallel implementation of the intermediate deflation checks and the required reordering
steps. The basic idea of the parallel task-based AED algorithm is visualized in Figure 4.

The starneig_SEP_DM_Schur interface function was compared against the state-of-
the-art MPI-based PDHSEQR subroutine [9]. The results are presented in Table 5 and
Figure 5. The StarNEig interface function outperforms the PDHSEQR subroutine (in terms
of the speed) in all cases. In particular, StarNEig is almost three times faster for the

http://www.nlafet.eu/ 10/28

NLAFET D2.7: Eigenvalue problem solvers

Sch
ur r

educti
on

Reorder

Deflate

Bulge chasing

Shifts

Spike

a) b)

c) d) e)

f) g)

H
essenberg reduction

Figure 3: An illustration of a single iteration of the multishift QR algorithm with AED.
Starting from the left: a) the original A in Hessenberg form H; b) an AED window
is placed at the lower right corner (highlighted in red); c) the AED window is reduced
to Schur form and a spike is formed; d) tiny element in the spike lead to a converged
eigenvalue that is successfully deflated by setting the matching element in the spike to
zero (highlighted in green); e) a failed eigenvalue candidate is reordered to the top left
corner of the AED window (highlighted in red); f) the remaining AED window is reduced
back to upper Hessenberg form; and g) pipelined QR iteration with two bulge-chasing
windows. Note how the active region (dashed outline) shrinks after the AED process
managed to deflate a set of eigenvalues. The similarity transformations from each diagonal
computational window are accumulated and applied as matrix-matrix multiplications in
associated submatrix updates.

largest considered problem (n = 120 000). Based on the data gathered from the compu-
tational experiments, the larger problems seem to have a larger probability of deflating
into several independent subproblems as the algorithm proceeds. As part its basic design,
StarNEig is capable of detecting and processing several independent subproblem concur-
rently. Naturally this increases parallelism and reduces the run-time, as demonstrated in
Table 5 and Figure 5. The basic ideas have been explained in D2.6.

The scalability of the starneig_SEP_DM_Schur interface function was investigated
separately. The results are presented in Figure 6. When we move from a single node
to four nodes the performance is roughly doubled. For problems that are larger than
n = 100 000, we observe good speedups for even larger number of nodes. It should be
noted that the QR algorithm is an iterative method and the nature of the input matrix
can have a huge impact on the convergence rate. In particular, based on the data gathered
from the computational experiments, it appears that Hessenberg matrices computed from
dense matrices with entries distributed uniformly typically require only a few bulge chasing
steps. The QR algorithms ends up performing several consecutive AED steps between the
bulge chasing steps thus leading to faster convergence. However, the bulge chasing steps
are the main source of parallelism in the QR algorithm, which explains why this type of
random test problems do not scale particularly well.

http://www.nlafet.eu/ 11/28

NLAFET D2.7: Eigenvalue problem solvers

a) b) c) d)

Figure 4: An illustration of a parallel AED step. From left to right: a) the AED window;
b) a small deflation window is placed at the lower right corner and the involved eigenvalue
candidates are either deflated or moved to the top left corner of the deflation window;
c) a series of small reordering windows are placed on the diagonal (only one illustrated
here) and the failed eigenvalues from the deflation window are moved together to the
upper left corner of the AED window; then d) the next deflation window is placed on
the diagonal. The similarity transformations from each diagonal computational window
are accumulated and applied as matrix-matrix multiplications in associated submatrix
updates. In practice, the deflation and reordering windows are relatively small and the
deflation and reordering steps can overlap and thereby enhance the potential parallelism.

Table 5: A comparison between PDHSEQR (left in each column-pair) and
starneig_SEP_DM_Schur (right in each column-pair). Residuals are reported in multiples
of the double precision floating-point unit roundoff; see (5) and (8).

n CPU cores Run-time (secs) Rsep,A(S) Rorth(Q)
10 000 36 1 · 28 (28) 38 18 145 189 100 130
20 000 36 1 · 28 (28) 158 85 191 248 130 169
40 000 36 1 · 28 (28) 708 431 120 314 161 217
60 000 121 4 · 28 (112) 992 563 285 369 191 249
80 000 121 4 · 28 (112) 1667 904 279 419 182 297
100 000 121 4 · 28 (112) 3319 1168 240 397 163 269
120 000 256 9 · 28 (252) 3268 1111 288 442 184 318

We now turn the attention to the generalized eigenvalue problem. Given a Hessenberg-
triangular decomposition (A,B) = Q(H,R)ZT , the StarNEig interface functions

• starneig_GEP_SM_Schur() and

• starneig_GEP_DM_Schur()

compute a generalized Schur decomposition

A = Q(U1SU
T
2)ZT , B = Q(U1TU

T
2)ZT , (16)

where S is upper quasi-triangular with 1 × 1 and 2 × 2 blocks on the diagonal, T is a
upper triangular, and U1 and U2 are orthogonal. On exit, Q and Z are overwritten by
Q ← QU1 and Z ← ZU2. Contrary to the standard case, each generalized eigenvalue is
represented as a pair of numbers (α, β) such that the actual generalized eigenvalue λ is
given by α/β for β 6= 0 (finite eigenvalue). The case β = 0 corresponds to an infinite
eigenvalue, which appears if the matrix B is singular. If both α = 0 and β = 0, then the
eigenvalue is indefinite/undefined. In finite precision arithmetic, a highly ill-conditioned

http://www.nlafet.eu/ 12/28

NLAFET D2.7: Eigenvalue problem solvers

20000 40000 60000 80000 100000 120000
Matrix dimension

0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e
ru

nt
im

e

StarNEig
PDHSEQR

Figure 5: Relative run-time improvement of starneig_SEP_DM_Schur with respect to
PDHSEQR (base at 1.0). The used CPU core count always favours PDHSEQR (see Table 5).

generalized eigenvalue problem can have both infinite and indefinite eigenvalues. The
latter corresponds to a singular eigenvalue problem. In case of a real, an infinite or an
indefinite eigenvalue, the α and β values can be read off directly from the diagonals of S
and T , respectively.

Both interface functions are implemented on top of StarPU. The basic theory and
the main computational steps for SEP are generalized and extended to GEP. One signif-
icant difference is that the GEP algorithm attempts to identify and isolate any infinite
eigenvalues. The standard convention4 is to classify a real eigenvalue as infinite if the
corresponding diagonal entry of T has magnitude smaller than u||T ||F . Any infinite
eigenvalues can be reordered to the upper left (or bottom right) corner of the Hessenberg-
triangular form and deflated immediately. This deflation not only reduces the size of the
remaining sub-problem, it also improves the rate of convergence of the algorithm. The
detection of infinite eigenvalues is performed during the QZ bulge chasing stage and, if
necessary, a set of special reordering tasks is inserted once a large enough portion of the
bulge chasing tasks have completed. The detected infinite eigenvalues are ordered to the
upper left corner of the matrix, which allows the next AED to be overlapped with the
reordering stage.

The starneig_GEP_DM_Schur interface function was compared against the state-of-
the-art MPI-based PDHGEQZ subroutine [4, 2]. The results are presented in Table 6 and
Figure 7. Table 7 show the number of (nearly) infinite and (nearly) indefinite eigenvalues
in the final generalized Schur form. We see that, StarNEig is between 1.4 and 7.9 times
faster than PDHGEQZ. The matrix dimensions n = 60 000 and n = 80 000 are particularly
interesting since in both cases infinite eigenvalues were detected by both algorithms but in

4The DHGEQZ LAPACK subroutine uses an identical condition.

http://www.nlafet.eu/ 13/28

NLAFET D2.7: Eigenvalue problem solvers

20k 40k 60k 80k 100k 120k 140k 160k
Matrix dimension

0

500

1000

1500

2000

2500

3000
Ru

nt
im

e
[s

]
1 nodes
4 nodes
9 nodes
16 nodes
25 nodes

Figure 6: Scalability results for starneig_SEP_DM_Schur. Each node contains 28 cores.

Table 6: A comparison between PDHGEQZ (left in each column-pair) and
starneig_GEP_DM_Schur (right in each column-pair). Residuals are reported in multiples
of the double precision floating-point unit roundoff; see (6), (7) and (8).

n CPU cores Run-time Rgep,A(S) Rgep,B(T) Rorth(Q) Rorth(Z)
(secs)

10 000 36 28 57 23 356 363 354 350 117 117 325 339
20 000 36 28 199 64 523 542 519 526 149 154 480 515
40 000 36 28 903 308 917 803 913 781 209 199 856 772
60 000 121 112 746 94 178 175 248 234 187 178 127 118
80 000 121 112 3499 2527 4383 3570 5007 4068 291 320 3583 2891

the former case StarNEig was almost eight times faster and in the latter case StarNEig
was only 1.4 times faster. In addition, PDHGEQZ managed to detect significantly more
infinite eigenvalues5 in both cases. The exact reason for this large difference in behavior
is a topic for future analysis. However, we can make several educated guesses:

• The log-files clearly state that the case of n = 60 000 decoupled into many inde-
pendent sub-problems. This increased the level of parallelism and, perhaps more
importantly, reduced the need for global communication. However, the n = 80 000
case also deflated into many independent sub-problems.

• PDHGEQZ detected most of the infinite eigenvalues late in the n = 60 000 case and
thus benefited from the deflated infinite eigenvalues only to a limited extent.

5Some detected infinite eigenvalues are classified as nearly indefinite eigenvalues.

http://www.nlafet.eu/ 14/28

NLAFET D2.7: Eigenvalue problem solvers

Table 7: The number of infinite and indefinite eigenvalues in the outputs of PDHGEQZ
(left in each column-pair) and starneig_GEP_DM_Schur (right in each column-pair). The
Infinities and Nearly infinities columns show the number of infinite eigenvalues (ti,i = 0)
and nearly infinite eigenvalues (|ti,i| < u||T ||F), respectively. The Indefinites and Nearly
indefinites columns show the number of indefinite (|si,i| = 0 and |ti,i| = 0) and nearly
indefinite eigenvalues (|si,i| < u||S||F and |ti,i| < u||T ||F), respectively. The types of the
classifications are disjoint.

n Infinities Nearly infinities Indefinites Nearly indefinites
10 000 0 0 0 0 0 0 0 0
20 000 0 0 0 0 0 0 0 0
40 000 0 0 0 0 0 0 0 0
60 000 7758 4401 0 42 0 0 42632 15323
80 000 46145 23 0 2 0 0 10711 10717

• PDHGEQZ detected most of the infinite eigenvalues early in the n = 80 000 case and
thus benefited from the deflated infinite eigenvalues to a greater extent.

It should be noted that the fact that one code managed to detect more infinite eigen-
values does not, in general, imply that one computed result is more valid than the other.
In particular, the computed residuals are essentially identical (see Table 6). Undetected
infinite eigenvalues can cause the QZ algorithm to perform more iterations, thus adding
more rounding errors to the final result, but this has not affected the residuals.

Since the behavior of the QZ algorithm appears to be less predictable compared to the
QR algorithm, we decided to generate input matrices for the scalability experiment using
the Hessrand1 algorithm (see, e.g., [4, 5]) described below. Let N (µ, σ) be the normal
distribution with mean µ and variance σ, and let χ2(τ) be the chi-squared distribution
with τ degrees of freedom. We generate the input matrix pair (H,R) as follows:

hi,j ∼ N (0, 1), i = 1, . . . , j, j = 1, . . . , n,
h2

i+1,i ∼ χ2(n− i), i = 1, . . . , n− 1,
ri,j ∼ N (0, 1), i = 1, . . . , j − 1, j = 1, . . . , n, (17)
r2

i,i ∼ χ2(i− 1), i = 2, . . . , n,
r2

1,1 ∼ χ2(n).

The resulting matrix pairs (H,R) in Hessenberg-triangular form have reasonably well-
conditioned eigenvalues and, thus, the convergence behaviour is expected to be more
consistent. Scalability results for starneig_GEP_DM_Schur are presented in Figure 8.
The results show that that larger problems benefit from using additional nodes, although
with modest scalability for the largest problem considered (n = 100 000) on 25 nodes.
However, we expect improved scalability for larger problems. As with the standard case,
only a few bulge chasing steps were required for convergence.

http://www.nlafet.eu/ 15/28

NLAFET D2.7: Eigenvalue problem solvers

10000 20000 30000 40000 50000 60000 70000 80000
Matrix dimension

0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e
ru

nt
im

e

StarNEig
PDHGEQZ

Figure 7: Relative run-time improvement of starneig_GEP_DM_Schur with respect to
PDHGEQZ (base at 1.0). The used CPU core count always favours PDHGEQZ (see Table 6).

10k 20k 40k 60k 80k 100k
Matrix dimension

0

200

400

600

800

1000

Ru
nt

im
e

[s
]

1 nodes
4 nodes
9 nodes
16 nodes
25 nodes

Figure 8: Scalability results for starneig_GEP_DM_Schur. Each node contains 28 cores.

http://www.nlafet.eu/ 16/28

NLAFET D2.7: Eigenvalue problem solvers

6 Eigenvalue reordering and invariant subspaces
Given a Schur decomposition A = QSQT and user’s selection of eigenvalues, the StarNEig
interface functions

• starneig_SEP_SM_ReorderSchur() and

• starneig_SEP_DM_ReorderSchur()

attempt to reorder the selected eigenvalues to the top left corner of an updated Schur
matrix Ŝ by an orthogonal similarity transformation

A = Q(UŜUT)QT . (18)

On exit, Q is overwritten by Q← QU . Both interface functions are implemented on top
of StarPU. The shared memory variant starneig_SEP_SM_ReorderSchur was already
discussed in D2.5 although major improvements have been made since (GPU support in
particular).

The starneig_SEP_DM_ReorderSchur interface function was compared against the
MPI-based PDTRSEN subroutine [7]. The results are presented in Table 8 and Figure 9.
StarNEig outperforms PDTRSEN in all cases. In particular, StarNEig is almost five times
faster for the largest considered problem (n = 120 000). The results are very much in line
with the shared memory results presented in [13, 14] and D2.5. We note that StarNEig
generated a much larger Rsep,A(S̃) residual in the case n = 40 000. At this point, we can
only comment that the result is repeatable (we also repeated the PDTRSEN experiment)
and is likely related to the numerical conditioning of the input matrix.

The scalability of the starneig_SEP_DM_ReorderSchur interface function was investi-
gated separately. For time saving reasons, we constructed a set of well-conditioned input
matrices6 for the experiments. The results are presented in Figure 10. The results show
that moving from a single node to four nodes typically almost quadruples the performance
and a similar (but slightly weakening) trend continues all the way to 25 nodes. We find
these results to be outstanding.

Now, we turn our attention to the generalized case. Given a generalized Schur decom-
position (A,B) = Q(S, T)ZT , the StarNEig interface functions

• starneig_GEP_SM_ReorderSchur() and

• starneig_GEP_DM_ReorderSchur()

attempt to reorder the selected generalized eigenvalues to the top left corner of an updated
generalized Schur form (Ŝ, T̂) by an orthogonal similarity transformation

A = Q(U1ŜU
T
2)ZT , B = Q(U1T̂U

T
2)ZT , (19)

On exit, Q and Z are overwritten by Q ← QU1 and Z ← ZU2. Both interface functions
are implemented on top of StarPU.

The starneig_GEP_DM_ReorderSchur interface function was compared against the
MPI-based PDTGSEN subroutine [2]. The results are presented in Table 9. We performed
two separate experiments as explained below:

6The separation between two eigenvalues is guaranteed to be at least 1.

http://www.nlafet.eu/ 17/28

NLAFET D2.7: Eigenvalue problem solvers

Table 8: A comparison between PDTRSEN (left in each column-pair) and
starneig_SEP_DM_ReorderSchur (right in each column-pair). 35% of the eigenvalues
were randomly selected. Residuals are reported in multiples of the double precision
floating-point unit roundoff; see (5) and (8).

n CPU cores Run-time (secs) Rsep,A(S̃) Rorth(Q)
10 000 36 1 · 28 (28) 12 3 214 214 146 146
20 000 36 1 · 28 (28) 72 25 287 286 195 194
40 000 36 1 · 28 (28) 512 180 332 3265 260 258
60 000 121 4 · 28 (112) 669 168 471 468 311 309
80 000 121 4 · 28 (112) 1709 391 554 551 374 372
100 000 121 4 · 28 (112) 3285 737 579 574 386 383
120 000 256 9 · 28 (252) 2902 581 662 660 446 443

Table 9: A comparison between PDTGSEN (left in each column-pair) and
starneig_GEP_DM_ReorderSchur (right in each column-pair). 35% of the eigenvalues
were randomly selected. The upper half shows the results for the main experiment and
the lower half shows the results for a synthetic test problem. The large differences in
run-times (upper half, n = 60 000 and n = 80 000) are due to differences how the two
codes handle a failed swap of two diagonal blocks. Residuals are reported in multiples of
the double precision floating-point unit roundoff; see (6), (7) and (8).

n CPU cores Run-time Rgep,A(S̃) Rgep,B(T̃) Rorth(Q) Rorth(Z)
(secs)

10 000 36 28 30 8 428 432 396 399 156 158 355 355
20 000 36 28 176 52 680 683 619 621 224 225 549 549
40 000 36 28 1176 364 1126 1125 1009 1009 383 382 856 856
60 000 121 112 7 324 175 186 234 254 178 187 118 128
80 000 121 112 64 729 3570 3672 4068 4178 320 381 2891 2923
10 000 36 28 35 8 72 70 97 95 67 66 67 66
20 000 36 28 141 51 86 99 117 133 82 92 80 92
40 000 36 28 594 375 113 144 125 196 99 135 80 135
60 000 121 112 1004 341 151 178 198 239 139 165 132 164
80 000 121 112 1417 778 163 210 188 285 132 195 121 195

1. The first experiment (see the upper half of Table 9) completes the upper branch of
the main experiment (see Figure 1). The reason why we performed two separate
experiments was that the larger matrices (n = 60 000 and n = 80 000) were so ill-
conditioned that both algorithms failed to reorder the Schur form in its entirety.
In particular, the nearly indefinite eigenvalues can cause many numerical problems.
The partially reordered output matrices are still in generalized Schur form, as they
should be, but the performance results are not comparable due to the differences in
how the two codes handle a failed swap of two diagonal blocks. PDTGSEN aborts the
reordering procedure after one MPI process detects a failed swap and the run-time
can thus be just a few seconds. On the other hand, StarNEig attempts to continue
the reordering procedure for those parts of the matrix that are not effected by the
failed swap. The latter could thus potentially produce a more complete output. The
answer to the question which approach is better depends on the application.

http://www.nlafet.eu/ 18/28

NLAFET D2.7: Eigenvalue problem solvers

20000 40000 60000 80000 100000 120000
Matrix dimension

0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e
ru

nt
im

e

StarNEig
PDTRSEN

Figure 9: Relative run-time improvement of starneig_SEP_DM_ReorderSchur with re-
spect to PDTRSEN (base at 1.0). 35% of the eigenvalues were randomly selected. The used
CPU core count always favours PDTRSEN (see Table 8).

2. The second experiment (see the lower half of Table 9) attempts to correct for the
shortcomings of the first experiment by constructing a set of better conditioned
input matrices for which failure to swap is less likely. Figure 11 presents the results
from the second experiment. Based on these numbers, StarNEig is between 1.6 to
4.4 times faster than PDTGSEN. The results of a scalability experiment are presented
in Figure 12 and are inline with the standard case.

The GPU performance was investigated separately and the results are presented in
Figure 13. We performed one set of experiments using a single CPU socket (14 cores) and
a second set of experiments using two CPU sockets (28 cores). We note that the inclusion
of a single GPU can improve the performance by a factor of 1.7 and the inclusion of
two GPUs can improve the performance by a factor of 3.5. Surprisingly, a configuration
consisting of one or two GPUs paired with a single CPU socket appears to give the best
performance. A more complete understating need further analysis.

http://www.nlafet.eu/ 19/28

NLAFET D2.7: Eigenvalue problem solvers

20k 40k 60k 80k 100k 120k 140k 160k
Matrix dimension

0

200

400

600

800

1000

1200
Ru

nt
im

e
[s

]
1 nodes
4 nodes
9 nodes
16 nodes
25 nodes

Figure 10: Scalability results for starneig_SEP_DM_ReorderSchur. 35% of the eigenval-
ues were randomly selected. Each node contains 28 cores.

10000 20000 30000 40000 50000 60000 70000 80000
Matrix dimension

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

ru
nt

im
e

StarNEig
PDTGSEN

Figure 11: Relative run-time improvement of starneig_GEP_DM_ReorderSchur with re-
spect to PDTGSEN (base at 1.0). 35% of the eigenvalues were randomly selected. The used
CPU core count always favours PDTGSEN (see Table 9).

http://www.nlafet.eu/ 20/28

NLAFET D2.7: Eigenvalue problem solvers

10k 20k 40k 60k 80k 100k
Matrix dimension

0

100

200

300

400

500

600

700

Ru
nt

im
e

[s
]

1 nodes
4 nodes
9 nodes
16 nodes
25 nodes

Figure 12: Scalability results for starneig_GEP_DM_ReorderSchur. 35% of the eigenval-
ues were randomly selected. Each node contains 28 cores.

20k 40k 60k 80k
Matrix dimension

0

500

1000

1500

2000

2500

Ru
nt

im
e

[s
]

2 sockets, no GPUs
1 socket, no GPUs
2 sockets, 1 GPU
1 socket, 1 GPU
2 sockets, 2 GPUs
1 socket, 2 GPUs

Figure 13: GPU performance results for starneig_SEP_SM_ReorderSchur. 35% of the
eigenvalues were randomly selected. Each socket contains 14 cores.

http://www.nlafet.eu/ 21/28

NLAFET D2.7: Eigenvalue problem solvers

7 Computation of selected eigenvectors
Given a Schur decomposition A = QSQT and a user selection of eigenvalues, the StarNEig
interface functions

• starneig_SEP_SM_Eigenvectors() and

• starneig_SEP_DM_Eigenvectors()

compute and return an eigenvector for each of the selected eigenvalues. The shared
memory interface function starneig_SEP_SM_Eigenvectors is implemented on top of
StarPU. The distributed memory variant starneig_SEP_DM_Eigenvectors still requires
certain components before in can be integrated with the rest of the library. We emphasize
that the selected eigenvectors are computed directly from the (generalized) real Schur
forms and then backtransformed to the original basis. This is faster than first reordering
the selected eigenvalues to the upper left corner and then computing then eigenvector
from the upper left corner. This is illustrated in Figure 14.

Table 10 shows the run-time and residuals for starneig_SEP_Eigenvectors when
the user has selected either 35% or 100% of all eigenvalues. The parallel scalability is
illustrated in Figure 15 (35% selected) and Figure 16 (100% selected). We note that the
relative residuals are always a modest multiple of the unit roundoff. Moreover, the code
scales reasonably up to 64 cores.

We now return to the generalized eigenvalue problem. Given a generalized Schur
decomposition (A,B) = Q(S, T)ZT and the user’s selection of eigenvalues, the StarNEig
interface functions

• starneig_GEP_SM_Eigenvectors() and

• starneig_GEP_DM_Eigenvectors()

compute and return a generalized eigenvector for each of the selected generalized eigen-
values. The shared memory variant starneig_GEP_SM_Eigenvectors is implemented on
top of StarPU. The distributed memory variant starneig_GEP_DM_Eigenvectors still
requires certain components to be integrated with the rest of the library.

Table 11 shows the run-time and residuals for starneig_GEP_Eigenvectors when
the user has selected either 35% or 100% of all eigenvalues. The parallel scalability is
illustrated in Figure 17 (35% selected) and Figure 18 (100% selected). We note that the
relative residuals are always a modest multiple of the unit roundoff. Moreover, the code
scales reasonably up to 32 cores.

In exact arithmetic it is straightforward to compute eigenvectors in both the standard
and the generalized case. Standard algorithms are variants of the forward/backward sub-
stitution algorithms used for Gaussian elimination. However, in floating point arithmetic
it is entirely possible that the intermediate or the final result exceeds the representational
range and thus no regular solver can succeed. The StarNeig solvers are based on the
principles developed in [11] and [12] for regular backward substitution. The solvers dy-
namically scale the right hand side and the solution to prevent overflow. The scalings
are accumulated within each tile and are only applied when the results from two tiles are
combined. In reality, this is equivalent to different processing units using different units
of measurement, say, SI units versus imperial units. StarNeig solvers examine every
division and every linear update. If overflow is possible, then a suitable scaling factor
is computed and applied. If no scaling is necessary, then the StarNeig solvers will run

http://www.nlafet.eu/ 22/28

NLAFET D2.7: Eigenvalue problem solvers

(a) Selected eigenvectors in grey (b) The right hand side (c) After backtransformation

Figure 14: On the left: The users selection of eigenvalues both real and complex. Center:
the compressed representation of the eigenvectors used internally. Right: the final result
returned to the user after backtransformation.

slightly slower than a non-robust solver since the unnecessary checks must still be com-
pleted. If scaling is necessary, then the StarNeig solvers will produce a result which can
be evaluated whereas the non-robust solver will fail due to floating point overflow. Ap-
plying the necessary scalings requires extra time. This is clearly demonstrated in Figure
18. Here, the cases of n = 60 000 and n = 80 000 required more time than suggested by
the case of n = 40 000 due to the presence of many (nearly) infinite and nearly indefinite
eigenvalues (see Table 7) that dramatically increased the need for numerical scaling.

http://www.nlafet.eu/ 23/28

NLAFET D2.7: Eigenvalue problem solvers

Table 10: Run-times (64 cores) and residuals for starneig_SEP_SM_Eigenvectors.
Residuals are reported in multiples of the double precision floating-point unit roundoff;
see (9).

n Selected Run-time Esep(λ, x) Esep(λ, x) Esep(λ, x)
(secs) mean min max

10 000 35 % 1 1.03 0.72 6.28
20 000 35 % 8 0.96 0.67 1.51
40 000 35 % 40 0.45 0.29 7.24
60 000 35 % 117 0.81 0.54 5.73
80 000 35 % 256 0.69 0.43 6.59
100 000 35 % 473 0.24 0.16 0.77
120 000 35 % 781 0.47 0.22 4.13
10 000 100 % 4 1.04 0.71 6.28
20 000 100 % 14 0.96 0.67 1.91
40 000 100 % 92 0.45 0.29 80.99
60 000 100 % 301 0.81 0.54 16.49
80 000 100 % 654 0.69 0.43 12.13
100 000 100 % 1210 0.24 0.16 0.85
120 000 100 % 1995 0.47 0.22 16.53

10k 20k 40k 60k 80k 100k 120k
Matrix dimension

0

2000

4000

6000

8000

10000

12000

Ru
nt

im
e

[s
]

1 cores
8 cores
16 cores
24 cores
32 cores
40 cores
48 cores
56 cores
64 cores

Figure 15: Scalability results for starneig_SEP_SM_Eigenvectors. 35% of the eigenval-
ues were randomly selected.

http://www.nlafet.eu/ 24/28

NLAFET D2.7: Eigenvalue problem solvers

10k 20k 40k 60k 80k 100k 120k
Matrix dimension

0

2000

4000

6000

8000

10000

12000

Ru
nt

im
e

[s
]

1 cores
8 cores
16 cores
24 cores
32 cores
40 cores
48 cores
56 cores
64 cores

Figure 16: Scalability results for starneig_SEP_SM_Eigenvectors. 100% of the eigen-
values were selected.

Table 11: Run-times (64 cores) and residuals for starneig_GEP_SM_Eigenvectors.
Residuals are reported in multiples of the double precision floating-point unit roundoff;
see (10).

n Selected Run-time Egep(λ, x) Egep(λ, x) Egep(λ, x)
(secs) mean min max

10 000 35 % 3 0.40 0.15 0.62
20 000 35 % 16 0.41 0.14 0.81
40 000 35 % 118 0.37 0.14 0.92
60 000 35 % 1215 0.13 0.05 0.23
80 000 35 % 983 0.09 0.07 0.17
10 000 100 % 5 0.40 0.14 0.62
20 000 100 % 35 0.41 0.14 1.02
40 000 100 % 266 0.37 0.13 0.92
60 000 100 % 3133 0.13 0.05 0.23
80 000 100 % 2147 0.09 0.07 0.17

http://www.nlafet.eu/ 25/28

NLAFET D2.7: Eigenvalue problem solvers

10k 20k 40k 60k 80k
Matrix dimension

0

500

1000

1500

2000

2500

3000

3500

4000
Ru

nt
im

e
[s

]
1 cores
8 cores
16 cores
24 cores
32 cores
40 cores
48 cores
56 cores
64 cores

Figure 17: Scalability results for starneig_GEP_SM_Eigenvectors. 35% of the eigenval-
ues were randomly selected.

10k 20k 40k 60k 80k
Matrix dimension

0

2000

4000

6000

8000

10000

Ru
nt

im
e

[s
]

1 cores
8 cores
16 cores
24 cores
32 cores
40 cores
48 cores
56 cores
64 cores

Figure 18: Scalability results for starneig_GEP_SM_Eigenvectors. 100% of the eigen-
values were selected.

http://www.nlafet.eu/ 26/28

NLAFET D2.7: Eigenvalue problem solvers

8 Summary and some conclusions
Our long term goal has been to develop and implement a full suite of task-based algorithms
for solving nonsymmetric (dense) eigenvalues problems. Within the NLAFET project,
we have created a library called StarNEig. It is currently in a beta state, but already
implements task-based algorithms for most required computational steps. Our main goal
in this deliverable was to demonstrate that StarNEig library can perform the following
steps correctly and efficiently:

Step 1 Reduction to condensed forms (Hessenberg or Hessenberg-triangular forms)

Step 2 Computation of the eigenvalues, i.e., reduction to (generalized) Schur forms

Step 3 Eigenvalue reordering

Step 4 Computation of eigenvectors

Our approach for accomplishing this was to construct an experiment where we pass a set
of matrices and matrix pairs through all four steps. The relative residuals computed after
each step indicate that the library can indeed perform all four steps correctly.

In most cases the task-based components of StarNEig are several times faster than
ScaLAPACK-style subroutines. This is most clearly demonstrated in the case of the stan-
dard eigenvalue reordering problem (Step 3). Here we consistently obtain a speedups
of 2.8 or higher. For the generalized eigenvalue problem, all StarNEig codes are faster
than ScaLAPACK-style subroutines, but the improvement is less predictable. This may
well be due to the fact that the largest test problems were very ill-conditioned. Further-
more, the StarNEig library produces results for which relative residuals are comparable
to the considered ScaLAPACK-style subroutines. The presented results from the conducted
scalability experiments show that the algorithm implementations are scalable to some
extent in distributed memory. To conclude, our task-based algorithms and implemen-
tations contribute novel prototypes for solving dense nonsymmetric eigenvalue problems
for future extreme scale (likely heterogeneous) systems. Future work includes the use
of StarNEig software with Krylov-based methods for solving large-scale standard and
generalized eigenvalue problems and provide functionalities also for complex datatypes.

Acknowledgements
We thank the High Performance Computing Center North (HPC2N) at Umeå University,
which is part of the Swedish National Infrastructure for Computing (SNIC), for providing
computational resources and valuable support during test and performance runs.

References
[1] StarPU — A Unified Runtime System for Heterogeneous Multicore Architectures.

http://starpu.gforge.inria.fr/.

[2] B. Adlerborn, B. Kågström, and D. Kressner. PDHGEQZ User Guide. NLAFET
Working Note WN-2, May, 2016. Also as Report UMINF 15.12, Dept. of Computing
Science, Umeå University, SE-901 87 Umeå, Sweden.

http://www.nlafet.eu/ 27/28

NLAFET D2.7: Eigenvalue problem solvers

[3] B. Adlerborn, B. Kågström, and D. Kressner. Parallel variants of the multishift
QZ algorithm with advanced deflation techniques. In B. Kågström, E. Elmroth,
J. Dongarra, and J. Waśniewski, editors, Applied Parallel Computing, PARA 2006,
LNCS 4699, pages 117–126. Springer Berlin Heidelberg, 2006.

[4] B. Adlerborn, B. Kågström, and D. Kressner. A Parallel QZ Algorithm for distributed
memory HPC-systems. SIAM J. Sci. Comput., 36(5):C480–C503, 2014.

[5] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. I. Maintaining
well-focused shifts and level 3 performance. SIAM J. Matrix Anal. Appl., 23(4):929–
947, 2002.

[6] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. II. Aggressive
early deflation. SIAM J. Matrix Anal. Appl., 23(4):948–973, 2002.

[7] R. Granat, B. Kågström, and D. Kressner. Parallel eigenvalue reordering in real
Schur forms. Concurrency and Computation: Practice and Experience, 21(9):1225–
1250, 2009.

[8] R. Granat, B. Kågström, D. Kressner, and M. Shao. ALGORITHM 953: Parallel
Library Software for the Multishift QR Algorithm with Aggressive Early Deflation.
ACM Trans. Math. Software, 41(4):Article 29:1–23, 2015.

[9] R. Granat, B. Kågström, D. Kressner, and M. Shao. ALGORITHM 953: Parallel
Library Software for the Multishift QR Algorithm with Aggressive Early Deflation —
Electronic Appendix: Derivation of the Performance Model. ACM Trans. Math. Soft-
ware, 41(4), 2015. (Available online DOI http://dx.doi.org/10.1145/2699471).

[10] B. Kågström and D. Kressner. Multishift variants of the QZ algorithm with aggressive
early deflation. SIAM J. Matrix Anal. Appl., 29(1):199–227, 2006.

[11] C. C. Kjelgaard Mikkelsen and L. Karlsson. Blocked algorithms for robust solution
of triangular linear systems. In Roman Wyrzykowski, Jack Dongarra, Ewa Deelman,
and Konrad Karczewski, editors, Parallel Processing and Applied Mathematics, pages
68–78, Cham, 2018. Springer International Publishing.

[12] C. C. Kjelgaard Mikkelsen, A. B. Schwarz, and L. Karlsson. Parallel robust solution of
triangular linear systems. Concurrency and Computation: Practice and Experience,
0(0):1–19, 2018.

[13] M. Myllykoski. A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix
in Real Schur Form. In R. Wyrzykowski, J. Dongarra, E. Deelman, and K. Kar-
czewski, editors, Parallel Processing and Applied Mathematics, volume 10777, pages
207–216, Cham, 2018. Springer International Publishing.

[14] M. Myllykoski, C. C. Kjelgaard Mikkelsen, L. Karlsson, and B. Kågström. Task-
Based Parallel Algorithms for Reordering of Matrices in Real Schur Form. NLAFET
Working Note WN-11, April, 2017. Also as Report UMINF 17.11, Dept. of Computing
Science, Umeå University, SE-901 87 Umeå, Sweden.

http://www.nlafet.eu/ 28/28

